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ABSTRACT

The advent of sports analytics has ignited a fervor across all sporting disciplines, particularly soccer, where clubs are
sprinting to harness vast data reserves to elevate team performance, spearhead effective marketing endeavors, and bolster
financial gains crucial for club expansion. Much like Billy Beane’s transformative “Moneyball" approach, soccer clubs
are in pursuit of innovative strategies to transcend financial limitations and achieve triumph. In soccer, where goals

are scarce commodities, heightened offensive efficacy becomes imperative. Presently, one metric stands out as pivotal

in gauging a team’s goal-scoring success: expected goals (xG). This metric quantifies the likelihood of a given shot or
opportunity culminating in a goal, making it a linchpin in a team’s offensive strategy. Maximizing expected goals be-
comes paramount for teams aiming to capitalize on limited scoring opportunities during matches. Crucially, the first
step in reshaping tactical approaches hinges on identifying the most influential variables in predicting expected goals.
This study employs an array of machine learning methodologies, including Ridge, Lasso, Elastic Net, and Group Lasso
models. The objective is to unveil the key predictor variables that significantly impact team (offensive) performance, of-
ten delineating the thin line between championship glory and defeat. With the aim of predicting xG, this research also
incorporates modified bootstrap techniques to compute prediction intervals for the regularized machine learning mod-
els. By delving into the intricate fabric of soccer analytics, this study seeks to empower clubs with actionable insights,
fostering a new era of strategy and competitive edge on the field.

KEYWORDS
Soccer analytics; Expected goals; Managerial strategy; Statistical and machine learning methods; Bootstrap method; Pre-
diction interval.

INTRODUCTION

In 2007, Liverpool Football Club faced Associazione Calcio (AC) Milan in the Champions League Final - a rematch
of their dramatic 2005 encounter. While the final scoreline (2-1 to Milan) reflected a typical result, it did not capture
the broader story. Milan had long prepared for this moment through its innovative “Milan Lab," where doctors and
performance analysts examined players’ physiological and biomechanical data such as jumping ability, heart rate, mus-
cle weakness, and eye movement. The lab claimed that jump metrics alone could predict injuries with 70% accuracy.’
This represented one of the earliest instances of using data to optimize player health and performance in soccer. The
explosion of sports analytics began with the Oakland Athletics’ revolutionary “Moneyball" strategy in the 2002 base-
ball season.? The Athletics’ success demonstrated how data-driven strategies could allow underfunded teams to compete
with wealthier clubs. Since then, analytics has evolved into a multibillion-dollar global industry, valued at more than
$2.5 billion in 2022 and projected for rapid growth.? Despite initial skepticism from traditionalists such as Wilbon,*
Rose,> and Cowher,® analytics now shape nearly every modern sport.
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Compared to American sports, soccer was slower to embrace analytics.” Historically, managerial decisions were driven
by instinct and short-term performance.® However, clubs now collect vast data on match statistics, training sessions,

and player fitness. Jean-Pierre Meersseman of AC Milan likened analytics to a car dashboard-helpful information that
“makes driving easier."! This "dashboard" of data empowers coaches, players, and executives to make informed, evidence-
based decisions. Among modern soccer metrics, none has been more influential than expected goals (xG).! Expected
goals quantify "the probability of a shot resulting in a goal."? For example, since 78% of penalties in professional soc-
cer are scored,'® each penalty carries an xG value of 0.78 rather than a binary outcome of 0 or 1. Summing these prob-
abilities across all shots in a match gives a team’s total xG, a key measure for evaluating offensive performance and tac-
tical efficiency. This study focuses on identifying the variables most associated with a team’s expected goal total.

Because soccer features few scoring opportunities, understanding which metrics most affect expected goals is crucial.
A team’s xG reveals what truly occurred on the field-far better than the final score alone.!! A single goal can define
a season; optimizing player performance and team tactics to maximize xG can mean the difference between winning
and falling short. Recent advances in soccer analytics aim to model how both on-ball and off-ball actions contribute
to success. The central question is how “any action changes the likelihood of scoring."? Statsbomb’s models consider
player positions, shot type, and shot quality, while Perl et al.!? highlight pattern recognition and machine learning as
emerging research frontiers. Data from cameras, passes, dribbles, and positional tracking have expanded the analytical
scope of the game.!?

Before developing this study’s models, several existing approaches to goal prediction were examined. Sanchez Galvez et

al.™ used Logistic Regression, Naive Bayes, Decision Trees, and SVMs to predict match outcomes. Decroos & Davis'®
applied a Generalized Additive Model (GAM) to estimate the probability of imminent goals. Inan!® used Poisson re-
gression to model goal frequency across teams, and Liu et al.!” implemented transfer and vision learning methods with

an Inflated 3D Network (I3D) model to predict goal likelihoods. These frameworks collectively informed the model
selection process in this research. A substantial body of work also validates expected goals as a key metric for perfor-

mance analysis. Historically, narratives in soccer were driven by outcomes rather than quality of play, but xG reframes
performance by evaluating shot quality rather than results.!! Expected goals capture the fairness of performance-highlighting
when teams win by luck or fail despite dominance. Because xG incorporates nearly every event leading to a shot, it
provides a nuanced view of team and player performance.

In a study of 5,020 matches, 1,366 matches had xG values matching the final score, and 3,443 matched within a one-
goal margin.® This strong correlation underscores xG’s reliability as a predictor of performance and its growing influ-
ence in the sport. Statsbomb’s analyses further show that shooting from central areas, favoring foot shots over headers,
limiting crosses, and improving finishing are all correlated with higher xG.? Over an entire season, these insights be-
come powerful indicators of long-term team strength.!® Opta, another leading analytics firm, uses an XGBoost-based
model that incorporates contextual data such as distance to goal, shooting angle, goalkeeper position, defender pressure,
and play type (e.g., fast break, set piece).!” While both Opta and Statsbomb measure expected goals, their models differ
in computation-Opta’s inclusion of goalkeeper positioning being one example. Consequently, reported xG values can
vary slightly depending on the data provider.

Still, expected goals alone cannot explain match outcomes. Shots account for only about 1.5% of all match events,?
meaning that actions such as passing, dribbling, tackling, and transitions must also be included to model performance
accurately. Thus, this study incorporates multiple offensive and defensive variables, extending beyond shot-based data to
capture the full complexity of play. The growing adoption of analytics is transforming soccer management. Billy Beane,
the pioneer of “Moneyball," now advises Dutch club AZ Alkmaar, which uses data-driven methods to compete suc-
cessfully against much wealthier teams.?! Similar success stories, including Brentford FC in the English Premier League,
illustrate how analytics empower smaller clubs to achieve sustainable success through strategic efficiency.
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This research explores the intersection of statistics, machine learning, and soccer, emphasizing how data-driven insights
can improve decision-making. Players’ livelihoods and team success depend on optimizing performance, and under-
standing which variables drive goal-scoring opportunities has both strategic and financial implications. This study con-
tributes to that understanding by identifying the most significant predictors of expected goals, providing actionable in-
sights for coaches, analysts, and executives.

This manuscript is organized into six sections. The Introduction outlines the background, motivation, and literature
supporting the study. The Materials and Procedures section describes the dataset, variable definitions, data cleaning,
and exploratory data analysis (EDA). The Methods and Procedures section details the statistical and machine learning
methodologies used. The Results section presents model performance metrics, accuracy measures, and predictive com-
parisons. The Discussion interprets the key findings and implications, while the Conclusion provides a synthesis of
insights and recommendations for future research.

MATERIALS AND PROCEDURES
The Dataset

The dataset used for this study worked was manually created with data from Football Reference (known as FBref.com).
This site was created by Sports Reference to document many statistics in professional soccer matches around the world,
dating back to 2017, for many top clubs in their various competitions. These competitions may include domestic leagues,
domestic cups, intra-European/continental, or even friendly (exhibition) matches. The data stored on FBref.com is col-
lected by Opta, who captures and shares real-time sports data with other companies, and professional teams.

This analysis studies the data for Arsenal Football Club, a well-known team in the English Premier League, over the
past four league seasons, beginning with the 2019-2020 season. The English Premier League is widely regarded as the
most competitive league in the world, and is currently recognized as such, as the Union of European Football Asso-
ciation (UEFA) has ranked it as having the highest league coefficient ranking. Throughout the duration of these four
seasons, there have been a number of domestic opponents that Arsenal has faced, including the following clubs: Aston
Villa, Bournemouth, Brentford, Brighton & Hove Albion, Burnley, Chelsea, Crystal Palace, Everton, Fulham, Leeds
United, Leicester City, Liverpool, Manchester City, Manchester United, Newcastle United, Norwich City, Nottingham
Forest, Sheffield United, Southampton, Tottenham Hotspur, Watford, West Bromwich Albion, West Ham United, and
Wolverhampton Wanderers.

The complete dataset contains a total of twenty one variables (including the response variable), with a total of 152
records, accounting for thirty eight league matches per season, spanning four seasons. It is important to note that,
while Arsenal plays many non-league matches throughout the course of a season, the number and frequency of addi-
tional matches is variable. Therefore, to keep each season consistent with the others, this study only analyzes data from
the league-specific matches. Many of these records are quantitative data types, but qualitative data will also be present.
The dataset was split into train and test datasets. The train dataset includes data from the first three seasons of analysis,
including the 2019-2020 (1), 2020-2021 (2) and the 2021-2022 (3) seasons, and the test dataset includes data for the most
recently completed season at the time of analysis, 2022-2023 (4). The train dataset will be used to train a model that
will then be used to predict values for comparison to the test dataset to evaluate the performance of the adopted model.

Response and Predictor Variables

As the main objective of this research is to identify the metrics that most influence a team’s total number of expected

goals (xG) in a match, the variable xG will be focused on as a response. The response variable is continuous in nature.
Additionally, the "Match" variable serves as a unique identifier for each observation. The nineteen remaining predictor
variables for expected goals include:
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Predictor Variable Description

Season Label representing the season that each record corresponds to
(numbered 1 through 4)

Team formation Formation used to start the game

Possession Percentage of the game that a team has control of the ball

Passing accuracy Number of passes completed divided by total number of passes

Short length passing accuracy Accuracy for passes between 5 and 15 yards

Medium length passing accuracy Accuracy for passes between 15 and 30 yards

Long length passing accuracy Accuracy for passes greater than 30 yards

Dribble success rate Success rate of taking on a defender while dribbling

Percentage of shots on target Percentage of shots taken that would be a goal, if no goalkeeper
were to be present

Opponent fouls Number of fouls committed by the opposing team

Offsides Number of times a team gets penalized for having an attacking
player behind the last defender

Recoveries An action that ends possession for the opponent and begins
possession for the other team

Touches in the attacking third Touches in the attacking team’s final third of the field

Touches in the attacking penalty area | Touches in the attacking team’s penalty box

Tackle win percentage Proportion of tackles where the tackler’s team won possession

Crosses Medium-long range pass angled toward the center of the field
near the goal

Corner kicks Place kick taken by the attacking team, from the corner nearest
the goal

Interceptions Defensive player intercepts the ball from its intended target

Home/away status Team’s status of being home or away in a match

Table 1. Table of Predictor Variables and Description

In the raw dataset, there existed several variables that provided highly repetitive information, and required consideration
for removal. A further discussion of those several variables is included in the following section, which discusses pre-
processing steps taken. There were a multitude of pre-processing steps that were necessary prior to beginning analysis
of the raw dataset.

Data Pre-Processing
Remowval of Redundant Variables

Several of the predictor variables in the raw dataset are similar in nature and required removal due to their repetitive
nature. One variable that was removed was passing accuracy. There was a total of four distinct variables that related

to passing accuracy. Three of these four variables included short length, medium length, and long length passing accu-
racy. Short length passing accuracy is the accuracy of passes that are between 5 and 15 yards, whereas medium length
is the success rate of passes between 15 and 30 yards, and long length pass completion is for passes that are greater than
30 yards. Because a single pass cannot be represented by multiple of these three pass length types, these three variables
were all justifiably independent from one another. However, because the passing accuracy variable is a cumulative av-
erage of all a team’s passing success (short, medium, and long) for a given match, it was best to consider removing the
passing accuracy variable.

Additionally, the raw dataset included two variables relating to number of touches: touches in the opponent’s final
third of the field, and touches in the opponent’s penalty area. In further thinking, it became clear that these variables
were inherently correlated. If the attacking team happened to make a touch in the opponent’s penalty box, there would
have been a very strong likelihood that they had already had one or more touches in the opponent’s final third of the
field. Apart from long crosses or through balls, there are a limited number of ways where the team could ultimately
attain a touch in the penalty area without already going through the attacking third of the field. Given this, it was de-
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cided to remove the predictor variable of number of touches in the opponent’s final third, and to keep touches in the

penalty area.

Conversion to Factor Variables

There were several qualitative variables in the raw dataset, that required conversion to factor variables, prior to begin-
ning modeling and analysis. These variables included season, formation, and home/away status. Each season was con-
verted to be a number, labeled 1 through 4, to numerically represent each of the four different league seasons. Similarly,
over the course of the four total seasons of data, Arsenal utilized a total of 11 total formations, that were each given a
label. Finally, the home or away status variable had two possible values (home or away), and additionally required fac-
tor conversion. Upon the completion of this process, these three predictor variables were sufficient to be included in

modeling.

Bivariate Vizualization and Analysis of Data

Below are scatterplots for each quantitative variable in the dataset, versus the response variable, expected goals (xG), as
well as a table showing the correlation (r) value for each predictor variable versus the response variable. These figures
(figure 1-4) and table 2 show the relationship between each numeric predictor variable and the response variable, giving

us insight into how variables may or may not be correlated to expected goal values.
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Figure 1. Scatterplots of Possession (a), Passing Accuracy (b), Percentage of Shots on Target (c), and Opponent Fouls (d) vs Expected Goals
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Figure 4. Scatterplots of Successful Dribble Percentage (a), Touches in the Attacking Third (b), Touches in the Penalty Area (c), and Recoveries (d) vs

Expected Goals
Predictor Variable Product-moment Correlation Coefficient (r)
Possession 0.31
Passing Accuracy 0.16
Percentage of Shots on Target 0.02
Opponent Fouls -0.02
Offsides -0.01
Crosses 0.15
Interceptions -0.11
Short Length Passing Accuracy 0.05
Medium Length Passing Accuracy 0.06
Long Length Passing Accuracy 0.22
Corners 0.23
Percentage of Tackles Won 0.12
Percentage of Successful Dribbles -0.06
Touches in the Attacking Third 0.40
Touches in the Opponent’s Penalty Box 0.59
Recoveries 0.27

Table 2. Table of Pearsonian Product-moment Correlation Coefficient (r) for Predictor Variable vs Expected Goals (xG)

As seen in the scatterplots and table above, there are several variables that have some linear correlation with expected
goals. Possession, long length passing accuracy, corners, touches in the attacking third and penalty box, and recoveries
are all variables that had some correlation to the response variable. These correlations were studied in greater detail in
the Results and Analysis section of this study, discussing multicollinearity issues in the dataset.

Additional Data Visualizations

From analysis of the scatterplots, it is seen that several variables, including possession, passing accuracy, percentage of
shots on target, crosses, touches in the attacking third and penalty box, and recoveries were all correlated with expected
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goals. To explore further graphical trends among these variables and several of the factor variables, several additional
plots (figure 5-6) were created to highlight other interesting findings in the pre-processing stage. These plots, as well as
a brief discussion for the findings from each, are given below.
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In the first plot, Figure 5 (a), it is clear that team possession was much higher for particular formations, including 4-
3-3, 4-2-3-1, and 4-4-1-1. This implies that Arsenal achieved greater success in holding onto the ball, but does not yet
confirm if possession is significant in predicting expected goals. The second plot, Figure 5 (b), shows that there is no
clear relationship between percentage of shots on target and number of touches in the penalty area. Additionally, per-
centage of shots on target generally varies by season, whereas touches in the penalty area is clearly higher in the fourth
season. Knowing that Arsenal had performed the best in the most recent (fourth) season, it may have been expected
that the team would have a higher percentage of shots on target, and also a higher number of touches in the penalty
area. It was surprising to see that percentage of shots on target did not vary much throughout different seasons.

The next two plots focus more specifically on the relationship of touches in the penalty area and expected goals. Touches
in the penalty area was highly correlated with expected goals based on its scatterplot, and it was of interest to explore
further. First, in Figure 6 (a), it can be seen that there tends to be a much greater number of total touches in the penalty
area while playing at home. This result would be expected, as home field advantage does generally exist in most sports,
but it was interesting to see just how much more pressure Arsenal was placing on their opponents while playing in
North London. Finally, in Figure 6 (b), the total number of touches in the penalty area was explored by season and

by formation. It was peculiar to see how the number of formations used throughout the season continually decreased
over time. Again, knowing that Arsenal performed well in the most recent season where only one formation (4-3-3)

was used, it appears that experimenting with fewer formations may be a factor in improving team performance. This
may be because certain formations are more comfortable and a natural fit for the players, and trying a new formation
may throw off team chemistry and comfort.

METHODOLOGY
Methodology

This section details the several different regression modeling techniques used throughout this analysis. Due to the fail-
ure of several model assumptions, it was necessary to explore more complex techniques than multiple linear regression,
to identify which predictor variables are most important in predicting expected goals. Each of these different models
are described in the following subsections, including their formulas and purpose.

Multiple Linear Regression (MLR) Model

Prior to beginning a deep analysis, preliminary model assumption checking was required. This process began by cre-
ating a baseline multiple linear regression model that incorporated all original nineteen predictor variables. The initial

multiple linear regression model was as follows,
Y=XB+¢€ Equation 1.

where Y is a n x 1 vector of expected goals, X is a n x p design matrix of predictor variables, 3 is a p x 1 vector of
regression coefficients, and € is a n x 1 vector of random error components.???* Here, € ~ N (0,5?I). Therefore,
Y ~ N (X8, 0%0).

Residual Diagnostics and Multicollinearity Analysis

Using this initial multiple linear regression model, the key assumptions for linear regression were tested. The five key
assumptions are for linearity, homoscedasticity, independence, normality, and multicollinearity. The first and second
assumptions lie in checking the residual plot. The residual plot must show a random distribution of residuals, and also
show a distinct horizontal band shape, which suggests that the variances of the errors are equal. The next model as-
sumption that required checking was for a linear Q-Q plot, which determines how normal the initial dataset is. Finally,
the remaining two plots focus on the independence of assumptions.?*

Additionally, the initial multiple linear regression model is used to identify the Generalized Variance Inflation Factor
(GVIF) values for each predictor variable. A GVIF value is a generalized version of the Variance Inflation Factor (VIF)
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value. A VIF represents the amount of variance that is inflated, for each individual predictor variable in a multiple lin-
ear regression model. These coeflicients have larger values when multicollinearity exists in the data. A VIF value of 1
means that the predictor variable in question has no correlation to any other predictor in the model. In contrast, a VIF
value greater than 10 implies that the variable exhibits signs of multicollinearity and a correlation to at least one other
predictor variable, necessitating correction.?> A GVIF, in contrast, additionally accounts for variables that have greater
than 1 degree of freedom, such as polynomials, or categorical variables with more than 2 levels. GVIF applies the ap-
propriate change needed to properly analyze if a particular variable has issues relating to multicollinearity.26

Variance Stabilizing Transformation

Transforming the response, and/or the predictor variables, can play a great impact by improving model fit, and to
achieve a standard closer to normality. To identify the optimal transformation (or lack thereof), the Box-Cox trans-
formation method is often used. The Box-Cox method is a commonly used statistical technique that specifically changes
the response variable, to resemble a normal distribution more accurately. This process is accomplished using a A value,
which represents the most optimal exponent to apply to the response variable data. This A value can range from -2 to
2, with possible values including -2, -1, -0.5, 0, 0.5, 1, or 2; each value is associated with a transformation, including in-
verses, square roots, natural logs, or exponents. Additionally, a A value of 1 results in a conclusion that no transforma-
tion is the best fit for the data.?” The Box-Cox method is critical in determining if a transformation of the response
variable is the best option to improve overall model performance. This decision and respective transformation must be
made prior to modeling. The results of the Box-Cox test will be discussed in the Analysis section of this paper.

Likelibhood Ratio Test

The likelihood ratio test is a form of hypothesis testing that enables one to choose the best model between two pos-
sible options, based on the ratio of their likelihoods.?® The two models being compared are usually split, with one
model being simple, and the other being complex. In this study, the simple model was the linear regression model
without passing accuracy and touches in the attacking third (as both were found to have natural correlation to other
predictors), and the complex model was the same model, but with the applied square root transformation, as was found
optimal in the Box-Cox procedure. The formula for the likelihood ratio test represents the ratio between the log like-
lihood (L) of the simpler model and the more complex model. The result of this equation yields a chi-square value to
use for testing the null hypothesis that the simpler model is the best fit, versus the alternative that the complex model
is a better fit. The degrees of freedom for the test is equivalent to the difference in number of total parameters for the
two individual models.?” The likelihood ratio test procedure is important in determining if model complexities, such
as additional variables and transformations are justifiable to implement. The results of the likelihood ratio test will be
discussed further in the Results and Analysis section of the paper.

R? and AIC

The previously mentioned statistical and machine learning methods are all potentially applicable to the dataset for Arse-
nal Football Club, which has a sparse sample size and a large number of predictor variables. Machine learning is critical
in finding conclusions from a wealth of data. Each of these methods (Ridge, Lasso, Elastic Net, and Group Lasso) cre-
ate a model, and this study analyzes and compares the eflectiveness of each model in predicting a team’s total expected
goals, by using adjusted R?, Akaike Information Criterion (AIC), and other relevant criterion values. The adjusted R?
value is different from the traditional R? value, as it more properly adjusts for a higher number of predictor variables
in the model.?* The adjusted R? value adequately penalizes for the number of predictor variables present, as they can
implement bias. This method involves dividing the sum of the squares of the residuals and the totals, by their respec-
tive degrees of freedom, where 7 is the total number of observations in the dataset, and % represents the number of
estimated parameters in the model, which includes a total of p variables and the intercept, So.

Another common statistic used to determine overall model success is AIC. AIC represents how well a model fits the
data, for future prediction. Lower AIC values represent better model fit and are considered in conjunction with ad-
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justed R? to determine which model is the most appropriate for analysis, as well as the appropriate variables to keep in

1,30 t.31

the model,? ultimately to determine the goodness of fit of the model in representing the datase

All these procedures, as well as pre-processing and analysis steps, have been completed in using the statistical program-
ming language R, which has sufhiciently allowed for the possibility of making conclusions from this study. The AIC
function in R Studio is not compatible with certain advanced regression models, including those that are generalized
linear models (GLM), such as Ridge, Lasso, Elastic Net and Group Lasso. However, AIC is still a highly effective and
useful tool to compare initial models created for the dataset.

Variable Selection Methods
Stepwise Regression Methods

Stepwise regression is a procedure that builds a regression model from the given predictor variables and either keeps or
removes predictors until they are no longer significant enough to consider.?? There are two unique types of stepwise
regression: forward and backward. A forward stepwise selection involves building a greedy algorithm, with a model
beginning with only an intercept (no predictor variables), and adding predictors until they are no longer necessary to
predict for expected goals. The model output ultimately performs dimension reduction, by never adding the variables
that do not play a significant enough role into the model. In contrast, backward stepwise regression considers a com-
plete model with all predictor variables included and eliminates non-significant predictors until a final model is chosen
to represent the data, only including predictor variables deemed significant enough.** For both types of stepwise regres-
sion, each variable is evaluated against a particular criteria, most commonly Akaike’s Information Criterion (AIC).*
Regularized Regression Methods

Ridge Regression

There are several other prominent machine learning procedures that can effectively handle sparse or correlated features
in a dataset, including Ridge regression, Least Absolute Shrinkage and Selection Operator (Lasso) regression, Net Elas-
tic regression, and Group Lasso regression. Ridge regression, also known as £, regularization, begins by applying a
penalty (the sum of the squared coefficients) to account for correlation in the dataset. This works by shrinking coef-
ficients of correlated predictor variables, which helps achieve smaller variance. This is important in restricting the in-
fluence of predictors.** When determining the penalty, Ridge regression considers all predictor variables in the model,
which therefore makes the method most useful in scenarios where there are many predictor variables present, and all

have non-zero coeﬂicients.35'37

Lasso Regression

Least Absolute Shrinkage and Selection Operator (Lasso) regression (known as £; regularization) functions in a simi-
lar manner to Ridge regression, but has a key difference in the penalty term. Lasso methods also apply a penalty term,
that is instead based on the magnitude of coefficients, rather than sum of squared coeflicients. In contrast to Ridge re-
gression, Lasso does not weight the coeflicients of every predictor variable, but rather often picks one of the correlated
predictor variables and ignores the rest, effectively performing variable selection.®® It can remove predictors from the
model, by shrinking coefficients to exactly zero, unlike Ridge.*® Again, it is common to use machine learning tech-
niques including Lasso when dealing with larger datasets and correlated variables.

It is common to compare the results of Lasso regression with those of Ridge, to determine which model produces supe-
rior results with minimized error, to reduce or eliminate the impact of correlated variables in the model.
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Elastic Net Regression

Elastic Net regression is another popular machine learning technique, effectively combining elements of both Ridge
and Lasso regression, as another way to perform variable selection and shrink predictor variable coefficients.>* This
method removes groupings of correlated variables, while also keeping several predictors in the model. A series of cross-
validation steps are used to determine how much of the penalty is determined from Ridge regression, and how much
is determined by Lasso regression. Elastic Net regression is traditionally viewed as a balance of both Ridge and Lasso
regression, shrinking the coeflicients, possibly to 0, but not as commonly as Lasso regression. Elastic Net regression is
especially noteworthy for its ability to handle bias. With multiple variables that are highly correlated, it is possible for
Lasso regression to introduce bias,3* and therefore it is worthwhile to compare the performance of Elastic Net regres-
sion to both Ridge and Lasso.

Group Lasso Regression

Group Lasso regression follows a similar variable selection process as the Lasso method, but differs in its choice of im-
portant predictors. Lasso chooses several significant features among all the variables, whereas Group Lasso involves the
splitting of variables into groups to complete variable reduction. Upon splitting the data into groups, if a variable is

deemed important in a group, the Group Lasso procedure will include all variables in that same group in its model. If

a group produces no important predictors, all its variables will be excluded from the model. 442

Measures of Prediction Accuracy: MSE, RMSE, and MAPE

In addition to analyzing adjusted R? and AIC, models require the calculation of error values when determining over-
all model adequacy. There are three main measures that are routinely used, including mean squared error (MSE), root
mean square error (RMSE), and mean absolute percentage error (MAPE).

MSE squares the distance of data points from the regression line (errors), to ultimately find the average of the set of er-
rors. This procedure is popular, due to its squaring technique, which gives more weight to outlier data points. RMSE
calculates the square root of the MSE, which effectively makes the larger values generated by outlier data points smaller,
and therefore easier to interpret.** Finally, MAPE is a method to measure the accuracy of a predictive model. It is de-
sirable to minimize the MSE, RMSE, and MAPE values to increase model success.?* Each of these error calculations
are important to consider, as they are critical in determining the optimal model with the best prediction accuracy. The
formulas for each of these error values are listed below:

1 ¢ ;
MSE = — Y, - Y;)? Equation 2.
n Z( ) quation

=1

1 ~
RMSE = | — Y; - Y;)? Equation 3.
n ;( ] ) quation
1~ |Yi—Y;
MAPE = E ’Lz:; ZTZZ Equation 4.

where 7 is the number of data points in the dataset, Y; is the actual value of the response variable (square root of ex-
pected goals) for a particular data point, and Y; is the predicted value of the response variable for a data point.
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Bootstrap Method for Regression Models

In the analysis of these models, the creation of prediction intervals is hugely important to understanding the range that
the estimated value of square root expected goals falls within, and the accuracy of model prediction. The creation of
prediction intervals for each individual record in the test dataset requires bootstrapping, a procedure that resamples data
from one sample in order to randomly generate a distribution. This procedure can be used to estimate standard errors,
bias, obtain prediction intervals, and also to test a hypothesis.** The process of bootstrapping involves sampling the
records in the test dataset (in this study, 38 total records) a selected number of bootstrap resamples, B = 1000. Often,
B is chosen as a high number, to ensure better sample size in creating a prediction interval, from the enlarged sampling
distribution.* The advanced regularized regression methods described above, including Ridge, Lasso, Elastic Net, and
Group Lasso, and their functions and required packages in R, do not provide prediction intervals for individual records
of the test dataset. Therefore, to generate these intervals, it became necessary to increase the sample size through a
bootstrapping resampling technique.

To account for these issues, an alternative method was required to create a prediction interval using bootstrap resam-
pling method. Each test record had a unique predicted square root expected goal value, g, calculated by multiplying
the X matrix with the § vector. X contained all values of the predictor variables for each record, which was then mul-
tiplied with 3, the vector storing the coefficients for each predictor variable for each model. In total, there existed 38
unique fitted § values, stored in 7, the vector of all fitted values, for each model. After collecting these 38 fitted values,
they were then bootstrapped, with 1000 resamples of size 38 being generated from the original 38 data vectors. There-
fore, we have calculated 1000 predicted values by averaging out 38 predicted values from each of the bootstrap resam-
ples. After this step, a prediction interval of desired confidence level (1 — ) for the expected number of goals was then
able to be created for each of 1000 records. This process is unique from that of traditional bootstrapping, where ran-
dom sampling is usually the first step of the procedure. However, this study first required collection of all fitted values,
so that enough records were present to then randomly sample and create a distribution. The results of these bootstrap-
ping procedures are discussed in the following subsection.

RESULTS

The following section describes the results of the aforementioned modeling procedures, including model assumptions,
data transformation, fitted models, selection of most important predictor variables and of the best model to use, to pre-
dict expected goals along with prediction intervals.

Model Assumption and Multicollinearity Checking

As discussed earlier, inspection of preliminary model assumptions is required before using the model for inferential pro-
cedure. Upon fitting this multiple linear regression model of expected goals (xG) on the selected predictors, each key
assumption referenced in Methodology section was checked. Four of the five assumptions of linear regression can be
checked using the first three plots provided in figure 7, below, including (a) residual plot of the raw dataset versus the
model’s fitted values, (b) Q-Q plot, (c) scale-location plot, and (d) residual versus leverage plot.
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Residuals vs Fitted Q-Q Residuals
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Figure 7. Plots for Simple Linear Regression Model Assumption Checking, Including Residual vs Fitted Values (a), Normal Q-Q (b), Scale-Location (c),
and Residuals vs Leverage (d)

Since figure 7 (a) is not showing any specific direction or trend and the red line is very much horizontal, so, linearity
and independence of observations assumptions seem reasonable. From figure 7 (b), the points are very close to the dot-
ted straight line except a few points, indicating the normality assumption of error is reasonable. Finally, figure 7 (c)
produces the red line as a curve and it has some trend of increasing error variance. Thus, a variance stabilizing transfor-
mation of the response variable is necessary for drawing inferential decisions. The multiple linear regression model is as
follows:

G =
1.164 +0.149(Season 2) +0.215(Season 3) +0.010(Season 4) — 0.424(Formation 3 —4 — 3) — 0.965(Formation 4 —
1—-2—-1-2)—0.352(Formation 4 — 1 —4 — 1) — 0.277(Formation 4 —2 — 3 — 1) — 0.258( Formation 4 —3 — 1 —
2) — 0.378(Formation 4 — 3 — 2 — 1) — 0.220(Formation 4 — 3 — 3) — 0.263(Formation 4 — 4 —1—1) +
0.007(Formation 4 —4 — 2) — 0.786(Formation 5 — 4 — 1) + 1.017(Possession) + 0.874(Passing Accuracy) +
0.661(Percentage of Shots on Target) — 0.005(Opponent Fouls) + 0.048(O f fsides) — 0.029(Crosses)* +
0.024(Interceptions) — 1.167(Short Length Passing Accuracy) — 2.099(Medium Length Passing Accuracy) +
0.535(Long Length Passing Accuracy) — 0.011(Corners) + 0.649(Tackle Win Percentage) +
0.310(Success ful Dribble Percentage) — 0.001(Touches in the Attacking Third) +
0.055(Touches in the Penalty Area)*** + 0.003(Recoveries) — 0.042(Home/Away H)

Additionally, GVIF values were also analyzed for assessing the last assumption, multicollinearity. Below is a table (ta-
ble 3) documenting each predictor variable’s respective GVIF values and degrees of freedom, in the multiple linear re-
gression model. The predictor variables with GVIF values greater than 10 are considered muticollinear in practice.?*
However, it was plausible to leave all variables in the original multiple linear regression model, knowing that the ma-
chine learning algorithms used in modeling would perform variable reduction, and remove these problematic predictor

variables at a later time.
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Predictor Variable GVIF Degrees of Freedom
Season 17.528462 3
Formation 39.744686 10
Possession 5.009569 1
Passing Accuracy 19.563667 1
Percentage of Shots on Target 1.479036 1
Opponent Fouls 1.317865 1
Offsides 1.319266 1
Crosses 4.389041 1
Interceptions 1.607953 1
Short Length Passing Accuracy 4.742041 1
Medium Length Passing Accuracy 6.222260 1
Long Length Passing Accuracy 3.069269 1
Corners 2.914998 1
Percentage of Tackles Won 1.218060 1
Percentage of Successful Dribbles 1.261656 1
Touches in the Attacking Third 7.410396 1
Touches in the Opponent’s Penalty Box ~ 3.71142 1
Recoveries 1.601722 1
Home or Away Status 1.379950 1

Table 3. Table of GVIF Values and Degrees of Freedom for Each Predictor Variable

Variance Stabilizing Transformation of Response Variance

To account for the violations of the model assumptions described above, it was necessary to explore possible transfor-
mations of the response variable in the dataset, expected goals (xG). As mentioned in the "Variance Stabilizing Trans-
formation" subsection in the Methodology section, the Box-Cox method is a common technique to use to identify the
type of data transformation when either of the linearity, normality, and constant variance assumptions about the fitted
model is questionable. The Box-Cox procedure allows us to produce a plot of transformation parameter (\) on hor-
izontal axis and value of likelihood function of the model associated with X value on vertical axis. The plot for the
original multiple linear regression model is shown below, where the confidence interval bounds of the optimal A value
intercept 0.5, but do not intercept values of A = 0, nor A = 1.
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Figure 8. Box-Cox Plot to Identify Type of Variable Transformation

This plot implies that a A value of 0.5 is the best fit, and therefore the response variable requires a square root transfor-
mation to improve normality. Going forward, future modeling would be completed using a transformed response vari-
able: the square root of the expected goal value. The following multiple linear regression model, with response variable
transformation, is shown below:
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Gy =
0.836 + 0.043(Season 2) 4+ 0.066(Season 3) —0.003(Season 4) — 0.158( Formation 3 —4 — 3) — 0.404(Formation 4 —
1-2—-1-2)—0.099(Formation 4 — 1 —4 —1) — 0.118(Formation 4 —2 — 3 — 1) — 0.093(Formation 4 —3 — 1 —
2) — 0.315(Formation 4 —3 — 2 — 1) — 0.097(Formation 4 — 3 — 3) — 0.082(Formation 4 —4—1—1) +
0.048(Formation 4 — 4 — 2) — 0.507(Formation 5 — 4 — 1) + 0.446( Possession) — 0.043(Passing Accuracy) +
0.218(Percentage of Shots on Target) — 0.001(Opponent Fouls) + 0.019(Of fsides) — 0.011(Crosses)* +
0.013(Interceptions) — 0.085(Short Length Passing Accuracy) — 0.706(Medium Length Passing Accuracy) +
0.246(Long Length Passing Accuracy) — 0.005(Corners) + 0.267(Tackle Win Percentage) +
0.124(Swuccess ful Dribble Percentage) — 0.001(Touches in the Attacking Third) +
0.023(Touches in the Penalty Area)*** + 0.001(Recoveries) — 0.037(Home/Away H)

As was done in the previous section, each of the five assumptions must be checked, following this transformation of
the response variable. It can be seen that, while there is not perfect normality, there also is no distinct funnel shape,
indicating that the overall fit of the model on square-root transformed response (xG) might be more reasonable than
the model with the original xG. The same four plots are shown below, for the purpose of comparison. These plots are
providing indication of reasonable model assumptions. Using this transformed response variable will be the basis of
subsequent analysis in the coming sections.
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Figure 9. Plots for Model Assumption Checking with the Transformed Response Variable, Including Residual vs Fitted Values (a), Normal Q-Q (b),
Scale-Location (c), and Residuals vs Leverage (d)

Results of the Likelihood Ratio Test

The likelthood ratio test is a key step to determine the validity of adding complexities in terms of the predictor vari-
ables to the original regression model. The test was specifically used in this study to confirm the results of the Box-
Cox transformation, and to suggest that the more complex, transformed model would be a better fit for the data. Using
the 1rtest function in R, through the 1mtest package, a likelihood ratio test was completed to confirm the use of
a square root transformation. This test compared two models, including the “simple" model with all variables-except
for passing accuracy and touches in the attacking third, as both were found to be redundant variables-versus the same
model but with the square root transformation applied to the response variable, expected goals. This yielded a chi-
square test statistic of 272.25, and a p-value of 2.2 x 10716, This p-value is practically O which is less than a designated
« value of 0.05, which therefore suggests rejecting the null hypothesis, meaning that the two models are significantly
different from one another. This conclusion means that the square root transformation is satisfactory and justifiable, in
order to improve overall model adequacy. These results were important steps to enhance the validity of the subsequent
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modeling that has been performed and that will be documented below, which uses the same square root transformation
for the response variable.

Fitted Models Under Different Regression Methods

This subsection details results for each of the previously mentioned regression modeling techniques, and provides the
fitted model, adjusted R?, most important predictor variables chosen, and if applicable, the test statistic and p-value
from each model. For the regularization methods, the glmnet() function used to create the models (Ridge, Lasso, Elas-
tic Net, and Group Lasso) in R does not generate p-values or confidence intervals for each predictor variable. This limi-
tation required the use of error values and adjusted R? to compare overall model performance.

Stepwise Regression Methods

Backward Stepwise Regression We have fitted the model using backward step-wise regression method. The outputs
include each selected variable’s estimated parameter (), standard error, test statistic value (t), and p-value, as well as the
overall model’s residual standard error, degrees of freedom, multiple and adjusted R? values, F statistic, and p-value.

The fitted model for the backward stepwise regression model for the transformed response variable are as follows,

Gy = 0.412** + 0.280( Percentage of Shots on Target)* — 0.009(Crosses)* +
0.021(Touches in the Penalty Area)*** + 0.006( Recoveries)*
F = 28.17

Regression Degrees of Freedom = 4
Residual Degrees of Freedom = 147

P-value = 2.2¢-16

Adjusted R? = 0.419
AIC = 30.98115

where G represents the predicted (square root) value for expected goals. The stars (*) attached to each coefficient rep-
resents the significance at different nominal « levels. One star represents that the parameter is significant at the o =
0.05 level, two stars mean that the parameter is significant at the o« = 0.01 level, and three stars mean that the parame-
ter is significant at the o = 0.001 level.

The fitted model produced an adjusted R? value of 0.4185, meaning that approximately 41.85% of the total variation in
the square root of expected goals is explained by these four predictor variables. Considering the fitted model, all four
predictor variables selected through this machine learning technique-percentage of shots on target, crosses, touches in
the penalty area, and recoveries-are all individually significant in predicting expected goal values. Specifically, percentage
of shots on target, recoveries, and touches in the penalty area had a positive impact on a team’s predicted total xG in a
match, whereas crosses had a negative impact on predicting a team’s total xG. This will be contrasted with the variables
deemed significant from each of the subsequent models.

Further, the overall model achieved an F statistic value of 28.17, with a regression degree of freedom equal to four, and
a residual degree of freedom equal to 147. This test statistic value resulted in a p-value of 2.2 x 10715, implying that,
in addition to each individual predictor variable, that the overall model is also significant in predicted expected goals.
Finally, the backward stepwise regression model generated an AIC value of 30.98115, which will be used to compare to
the model generated by forward stepwise regression.
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Forward Stepwise Regression The fitted model for the forward stepwise regression model along with the necessary
outputs for the transformed response variable was as follows,

Gy = 0.412** + 0.280( Percentage of Shots on Target)* — 0.009(Crosses)** +
0.021(Touches in the Penalty Area)*** + 0.006( Recoveries)*
F = 28.17

Regression Degrees of Freedom = 4
Residual Degrees of Freedom = 147

P-value = 2.2e-16

Adjusted R? = 0.419
AIC = 30.98115

where 2:(; again represents the predicted (square root) value for expected goals. This fitted model, the corresponding
significance levels, and other measures of model success are the exact same as the values found from completing back-
ward stepwise regression. The adjusted R? value represents that 41.85% of the total variation in the square root value
of expected goals is explained by this forward stepwise regression model, containing these four variables (percentage

of shots on target, crosses, touches in the penalty area, and recoveries), which were again found to be individually sig-
nificant at the o equals 0.05. Further, the overall fitted model was found to be significant, with the same F statistic of
28.17, and a p-value of 2.2 x 10716, Again, each of these four predictor variables, in addition to the overall model, were
significant in predicting the square root transformed value of expected goals, with percentage of shots on target, recov-
eries, and touches in the penalty area having a positive impact on xG, and crosses having a negative impact. The AIC
of this model was also equivalent to the backward stepwise model, with a value of 30.98.

Regularized Regression Methods

Ridge Regression Model Ridge regression keeps all predictor variables in the fitted model (including those that were
deemed to have a natural correlation to other predictors), but appropriately penalizes the less important predictor vari-
ables. The fitted model is as follows,

2Gy = 0.512 + 0.031(Season)0.002( Formation) + 0.333(Possession) + 0.077(Percentage of Shots on Target) +
0.002(Opponent Fouls) + 0.002(O f fsides)0.004(Crosses) + 0.005(Interceptions) +
0.004(Corners)0.136(Short Length Passing Accuracy)0.234(Medium Length Passing
Accuracy)+ 0.192(Long Length Passing Accuracy)0.003(Percentage of Tackles Won)—
0.005(Percentage of Successful Dribbles) + 0.012(Touches in the Penalty Area) +
0.006(Recoveries)0.001(Home or Away Status)

Adjusted R? = 0.694

where G represents the predicted square root value for expected goals. The coefficients in the fitted model have been
penalized where appropriate, so that the variables that are most important in predicting expected goals, including the
four variables discussed earlier (percentage of shots on target, crosses, touches in the penalty area, and recoveries), all
have a higher weight and importance in calculating the square root value of expected goals.

It is important to note that the regularization methods (ridge, lasso, elastic net, and group lasso) do not use an F test
statistic, degrees of freedom, nor AIC values, unlike both backward and forward stepwise selection processes, due to
the differing methodologies previously described. However, adjusted R? is used across all models to determine over-
all model success. The ridge regression model achieved an adjusted R? value of 0.694, which is a step above the results
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achieved by the forward and backward stepwise regression models. Approximately 69.4% of the total variation in the
square root of expected goals is explained by this model, which is a quite high percentage, indicating that the model fits
the data well.

Lasso Regression Model Lasso regression removes predictor variables that were deemed to not be important in the
overall success of the model, by penalizing them and reducing their coeflicient to 0. This change is shown in the fol-
lowing fitted model for predicting the square root of expected goals, which contains only several of the nineteen total
predictors.

2Gy = 0.699 + 0.015(Touches in the Penalty Area) + 0.002(Recoveries)
Adjusted R? = 0.693

This model indicates that Lasso regression only found two predictor variables to be sufficient for predicting the square
root expected goal values. These two variables are touches in the penalty area and recoveries-both of which have been
deemed significant in other modeling techniques, such as forward and backward stepwise regression. Both predictors
positively impact a team’s total expected goal count in a match. The Lasso regression model had an adjusted R? value
of 0.693, which is just below the adjusted R? of the ridge model (0.694).

Elastic Net Regression Model The net elastic regression model serves as a compromise of the ridge and lasso models,
with the ability to penalize variables to a coeflicient value of 0, but it may keep the coeflicient of enough important
predictor variables. The following fitted model shows the coeflicients generated through elastic net regression.

Gy = 0.702 4 0.013(Touches in the Penalty Area) 4 0.002(Recoveries)
Adjusted R? = 0.696

While this fitted model only kept the same two predictor variables as found in lasso regression, it is important to note
the slightly different coefficient values, indicating that each variable was penalized and weighted differently through this
method. However, these two variables were again determined to be the most important in predicting the square root
value of expected goals, both positively impacting the count of expected goals. The elastic net model had a higher ad-
justed R?, informing that the model and its predictor variables chosen account for a greater proportion of the total
variation in the transformed response variable.

Group Lasso Regression Model The group lasso model was the final model chosen to represent the dataset, splitting
predictors into groups. In R, group lasso is performed using the same glmnet() function, but instead using adding the
multinomial parameter to the code, indicating a “grouped” type, instead of the default (no grouping). Similar to the
lasso regression model, the group lasso model can penalize insignificant predictor variables to the value of 0, keeping
only the predictors that are significant enough. The fitted model below shows the coefficients generated through group
lasso regression.

Gy = 0.699 + 0.015(Touches in the Penalty Area) 4 0.002(Recoveries)
Adjusted R? = 0.693

The fitted model has again selected touches in the penalty area and recoveries to be two particularly strong predic-
tors to model the square root value of expected goals. These coefficient values are similar to those generated from the
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lasso and elastic net models. This implies that all the models found touches in the penalty area and recoveries to be es-
pecially important in prediction of square root expected goals, each positively impacting the expected goal tally. The
adjusted R? value generated by this model was 0.693. These results are less successful than those of elastic net regres-
sion. The group lasso model had slightly higher error values, indicating slightly worse accuracy, and had a lower ad-
justed R? than the Elastic Net model. This informs us, that while all models performed well, the Elastic Net model
was marginally better than the other models employed in analysis.

Results and Accuracy Measures of the Fitted Models

The prediction accuracy measures of each of the six non-transformed regression and machine learning models are shown
in the table below. It can be seen that many of the models, especially the regularization methods, produced the best
accuracy measures. Out of all, the elastic net model performed the best, as it contained both the highest adjusted R?
value, and produced the lowest error values.

MSE RMSE MAPE

Backward 0.569  0.7546  44.88%
Forward 0.615 0.7843  47.35%
Ridge 0596 0.7718  45.57%
Lasso 0.620  0.7877  43.58%

Elastic Net 0.616  0.7846  42.71%
Group Lasso | 0.620  0.7877  43.59%

Table 4. Prediction Accuracy Measures by Model

Prediction Intervals

Following modeling procedures, it became necessary to produce prediction intervals for the 38 predicted expected goal
values from the test dataset. This process yielded a 95% prediction interval for each of the predicted expected goal val-
ues, comparing the predicted value to the lower (2.5%) and upper (97.5%) bounds of the interval. To generate the pre-
diction interval bounds for each of the 38 predicted values, bootstrapping was required because of the relatively small
size of the number of predicted values, as well as the inability of these machine learning models to generate their own
prediction intervals. Each of the 38 records in the test dataset were randomly bootstrapped a total of 1000 times in the
creation of a prediction interval, to test if each predicted expected goal total value fell inside or outside of the 95% in-
terval.

This procedure was repeated for each modeling technique-Ridge, Lasso, Elastic Net, and Group Lasso-on the non-
transformed response variable. The bounds of the prediction intervals, as well as the predicted values for the test dataset
generated by each model, are shown in the tables (table 5-6) below, with a further discussion taking place afterwards.
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Ridge Lasso
Predicted xG ~ 2.5% LPL  97.5% UPL | Predicted xG  2.5% LPL  97.5% UPL
1.59 1.22 3.32 1.42 1.00 3.31
1.69 1.23 3.46 1.66 1.07 3.59
1.36 1.08 3.32 1.09 1.07 3.32
2.52 1.23 3.46 2.26 1.07 3.59
2.36 1.22 3.32 2.25 1.07 3.31
2.11 1.08 3.46 2.10 1.00 3.59
1.44 1.08 3.32 1.20 1.07 3.31
1.84 1.08 3.32 1.78 1.07 3.31
1.82 1.08 3.32 1.87 1.00 3.31
1.34 1.08 3.46 1.00 1.00 3.59
1.57 1.08 3.32 1.28 1.07 3.32
2.62 1.23 3.32 2.63 1.07 3.31
1.83 1.08 3.46 1.47 1.07 3.59
1.33 1.08 3.32 1.25 1.00 3.31
1.98 1.23 3.46 1.74 1.07 3.59
1.36 1.23 3.46 1.41 1.07 3.59
1.93 1.08 3.46 1.81 1.07 3.59
1.40 1.22 3.32 1.29 1.00 3.31
2.94 1.23 3.32 2.84 1.00 3.31
1.96 1.23 3.46 1.79 1.00 3.59
2.09 1.22 3.46 2.31 1.00 3.59
1.30 1.08 3.46 1.18 1.00 3.59
1.84 1.08 3.46 1.99 1.00 3.59
1.78 1.08 3.46 1.39 1.00 3.59
2.00 1.08 3.46 1.57 1.00 3.59
3.46 1.08 3.32 3.59 1.07 3.31
1.57 1.08 3.46 1.45 1.07 3.59
2.04 1.23 3.46 1.94 1.07 3.59
1.83 1.08 3.32 1.45 1.07 3.32
1.45 1.08 3.32 1.17 1.00 3.31
1.33 1.22 3.32 1.17 1.07 3.31
3.32 1.23 3.32 3.31 1.07 3.31
1.08 1.08 3.46 1.07 1.07 3.59
1.87 1.08 3.32 1.79 1.07 3.31
1.34 1.23 3.32 1.17 1.07 3.32
1.23 1.23 3.46 1.25 1.07 3.59
1.83 1.08 3.46 1.55 1.07 3.59
1.65 1.23 3.32 1.78 1.07 3.31

Table 5. Ridge and Lasso Regression to Predict Expected Goal Values and 95% Prediction Intervals, on the Response
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Elastic Net Group Lasso
Predicted xG =~ 2.5% LPL  97.5% UPL | Predicted xG 2.5% LPL 97.5% UPL
1.42 1.05 3.05 1.42 1.00 3.31
1.61 1.08 3.30 1.66 1.07 3.59
1.13 1.08 3.06 1.09 1.07 3.32
2.14 1.08 3.30 2.26 1.07 3.59
2.12 1.08 3.05 2.25 1.07 3.31
1.98 1.05 3.30 2.10 1.00 3.59
1.22 1.08 3.05 1.20 1.07 3.31
1.72 1.08 3.05 1.78 1.07 3.31
1.78 1.05 3.05 1.87 1.00 3.31
1.05 1.05 3.30 1.00 1.00 3.59
1.30 1.08 3.06 1.00 1.07 3.32
2.44 1.08 3.05 2.63 1.07 3.31
1.50 1.08 3.30 1.47 1.07 3.59
1.25 1.05 3.05 1.25 1.00 3.31
1.72 1.08 3.30 1.75 1.07 3.59
1.39 1.08 3.30 1.41 1.07 3.59
1.74 1.08 3.30 1.81 1.07 3.59
1.29 1.05 3.05 1.29 1.00 3.31
2.67 1.05 3.05 2.84 1.00 3.31
1.74 1.05 3.30 1.79 1.00 3.59
2.16 1.05 3.30 231 1.00 3.59
1.19 1.05 3.30 1.18 1.00 3.59
1.87 1.05 3.30 1.99 1.00 3.59
1.40 1.05 3.30 1.39 1.00 3.59
1.54 1.05 3.30 1.57 1.00 3.59
3.30 1.08 3.05 3.59 1.07 3.31
1.45 1.08 3.30 1.45 1.07 3.59
1.89 1.08 3.30 1.94 1.07 3.59
1.44 1.08 3.06 1.45 1.07 3.32
1.21 1.05 3.05 1.17 1.00 3.31
1.17 1.08 3.05 1.17 1.07 3.31
3.05 1.08 3.05 3.31 1.07 3.31
1.08 1.08 3.30 1.07 1.07 3.59
1.74 1.08 3.05 1.79 1.07 3.31
1.19 1.08 3.06 1.17 1.07 3.32
1.25 1.08 3.30 1.25 1.07 3.59
1.52 1.08 3.30 1.55 1.07 3.59
1.69 1.08 3.05 1.78 1.07 3.31

Table 6. Elastic Net and Group Lasso Regression to Predict Expected Goal Values and 95% Prediction Intervals, on the Response
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The above tables highlight several interesting features. Each of these advanced regression techniques produced predicted
values of expected goals that were relatively similar to one another. This confirms the findings from previous testing,
where it was seen that these models were performing with similar success to one another, with a high adjusted R?
value. Additionally, the vast majority of these predicted values of expected goals fall within the 95% prediction intervals
for each test record, as generated through bootstrapping. These results are reflected in the figures (figure 10-11) below,
depicting the 95% prediction interval for each modeling technique. The prediction interval for each technique includes
its 2.5% lower prediction limit (2.5% LPL) and 97.5% upper prediction limit (97.5% UPL).
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Figure 11. 95% Prediction Intervals for Elastic Net and Group Lasso Predictions of Expected Goals

Again, as expected, most of the predicted responses are within the 95% prediction limits. The few predictions that fell

outside the bounds of the corresponding prediction interval, however, are deemed to be multivariate outliers. The re-
sults of each of these graphs, combined with the results of modeling, show that Ridge, Lasso, Net Elastic, and Group

Lasso regression all predicted the expected goal values with acceptable accuracy.
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In addition to bootstrapping and creating prediction intervals for each record in the test dataset, each modeling tech-
nique required a prediction interval for its overall predicted value of expected goals. A 95% global bootstrap prediction
interval (GPL) for each of the advanced regression and machine learning techniques is listed below:

Method 2.5% GPL  97.5% GPL
Ridge 1.658 1.963
Lasso 1.518 1.854
Elastic Net 1.497 1.786
Group Lasso 1.518 1.854

Table 7. 95% global bootstrap prediction interval (GPL)

Each of these 95% prediction intervals represent the predicted intervals for the true value of the team’s expected goals
scored per match, based on each of the four separate advanced regression techniques that yielded the highest accuracies
and adjusted R? values. After analyzing these prediction intervals-both for the true value of expected goals, and for the
bootstrapped test dataset-it’s confirmed that these machine learning methods are strong, and that the variables chosen
are significantly important indicators for predicting expected goals.

DISCUSSION

This section details the results and conclusions based on the data and analyses provided above, including the most im-
portant variables in predicting expected goals, and what this analysis means for the broader soccer and sports analytics
communities.

In analyzing this data, a plethora of different models, ranging from general multiple linear regression method to com-
plex regression methods, were used in determining the variables that were most impactful in predicting expected goals.
Among the most advanced modeling techniques-namely, Ridge, Lasso, Elastic Net, and Group Lasso regression-there
was very little difference in the success of each model in predicting for expected goal values. Each of these four mod-
els produced very similar results, including low error values, and an adjusted R? of close to 0.70. While the differences
in error and R? values among these models is minimal, it does appear that Elastic Net regression is marginally better
than the rest, as it produced lower error values (lower MSE, RMSE, and MAPE), and a higher adjusted R? value. The
choice of an Elastic Net model means that it was most appropriate to penalize non-significant variables to play a lesser
impact in the prediction of the square root value of expected goals. This superior model ultimately showed that there
were several key variables, which are discussed below. The results of Net Elastic regression, and other similar mod-
els, are significant enough to determine that these advanced regression techniques succeed in predicting the square-root
transformed expected goal value for a given soccer team.

The modeling procedures discussed earlier are key in identifying the variables that are most important in predicting
expected goals. In these advanced regression models, as well as earlier models, such as forward and backward stepwise
regression, there are four variables that continually are deemed to be important. These four variables include: percent-
age of shots on target, number of crosses, number of touches in the penalty area, and number of recoveries. In partic-
ular, the number of touches in the penalty area and the number of recoveries are especially significant, as they had the
lowest p-values among the four variables from forward and backward stepwise regression, and also were the only two
predictor variables remaining (alongside the intercept) in advanced techniques such as Lasso, Elastic Net, and Group
Lasso.

These four variables were found to be the most impactful in determining a team’s predicted expected goal value. By
maximizing the number of goals that a team is expected to score in a match, there is a greater chance that the team will
end up winning. Therefore, there is great potential for team success in training with a focus on taking quality shots

on goal more often, by crossing the ball into the box from the wings, putting the ball into the box more often, and
playing a press on defense, to record higher numbers of recoveries. Practicing these concepts in drills, to maximize the
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percentage of shots on target, number of crosses, number of touches in the penalty area, and the number of recoveries
ultimately is important in helping overall team success in a match. All four variables have a positive relationship with
expected goals, indicating that an increase in any will help the team (be expected to) score more often. When com-
bined with strong defense, a potent offense that threatens many goals is very powerful. A tactical focus on getting the
most from your players, including focusing on these specific parts of the match, have significant ramifications in setting
a team up for the most success possible.

CONCLUSIONS

The effectiveness of these models represents another step taken to continue to analyze sports and its data in a deeper
manner. The largely untapped potential of statistics in sports is boundless. Teams are finally beginning to realize that
having a focus on analytics can be revolutionary to the success of the team, in matches, in maintaining physical health,
in marketing, in making money, in increasing fan engagement, and much more. Soccer clubs are beginning to employ
analytics teams to find the angles to get any advantage possible in each match. An extra advantage can be the difference
between winning or losing, and ultimately between winning trophies or nothing at all.

The results of this research can impact how teams prepare for matches and strategize to win. By determining the vari-
ables that are most significant in predicting expected goals, there are clear metrics for teams to focus on maximizing.
Achieving higher levels of expected goals has a direct correlation to actual goals scored in a match, and therefore deter-
mining how to get the best out a team can be related to these several key predictor variables. Additionally, it is clear
how complex statistical models can be used to represent a wealth of sports data. As mentioned in the introduction,
shots only represent a very minimal proportion of the total events occurring in a soccer match. However, using ma-
chine learning models, it is possible to account for a much greater proportion of the overall number of events occur-
ring in a match, beyond considering only the total number of shots. This modeling enables a team to make decisions
on a greater amount of data than only one or two unique predictor variables.

This study had several limitations, that would be key focus areas in the expansion of this work. Firstly, it would have
been relevant to consider additional predictor variables-especially those that are more defensive in nature, or reflect
transition periods in the match. It would also be beneficial to collect a larger dataset, expanding just beyond one team’s
records, and rather opening the door to expand into other teams, or even more broad, other international leagues. This
could elicit insight on how different variables are of importance across borders, reflecting unique styles of play. With
this larger dataset, a truly random train and test split could be used, further benefiting the study. The implementation
of these changes would be exciting and important for future continuation of the study.

Advances in the world of sports analytics are very exciting, as they open the door to further innovation in a relatively
new industry. New measures for team success are being found, and have the ability to continue to change the way play-
ers, coaches, and fans think about and analyze matches. This study reflects the growth of analytics opportunities in
sports, and particularly soccer, and how much more can be discovered through deep learning methods. Key variables to
improve team performance and health, and routes to commercial success are imperative for sports franchises around the
world, and there is an opening to make meaningful change in this community. Our goal in writing this paper is to be
a part of the sports analytics revolution. To push this research forward, we plan to extend the work to the spectrum of
more sophisticated machine learning methods, such as deep learning (DL), neural networks (NN), and artificial neural
networks (ANN) on big data related to professional soccer leagues.
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PRESS SUMMARY

This work discusses the growth of analytics in sports within a soccer context. Specifically, the "expected goal" (xG), a
key metric in modern soccer analytics, is the focus of the study, which seeks to analyze the most important predictor
variables in maximizing xG. This analysis will give us key insights into how a team can practice, strategize, and plan

appropriately to give themselves the best chance of winning, even if they might not have the same resources as larger

clubs or organizations.
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