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ABSTRACT 
Power outages across the United States are increasing in frequency and duration, raising concern about the resilience of critical 
infrastructure and the operational stability of regional energy systems. Prior work emphasizes system level reliability and severe 
weather, with limited insight into how local conditions shape outage duration at the distribution edge. This study identifies key 
associations of annual power outage duration in Louisiana, operationalized as a household level analog of the System Average 
Duration Index (h-SAIDI). Event correlated outage records, severe weather reports, and parish-scale indicators were integrated 
for 63 parishes across five biennial intervals (2014-2022). A Gamma generalized linear model with a log link was used to estimate 
associations, complemented by spatial and distributional analyses. Results indicated that outage duration reflects the interplay of 
severe weather factors, customer endpoint conditions, and underlying distribution network and restoration dynamics. Parishes 
with higher mobile home prevalence and severe weather damage exhibited longer annual outage duration. In contrast, 
unemployment and lack of vehicle access showed negative associations, consistent with the concentration in urbanized service 
territories characterized by shorter spans and greater switching options. These findings support targeted local resilience strategies 
across diverse service territories.  
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INTRODUCTION  
Power outages are a persistent and costly challenge across the U.S., prompting growing concern over the resilience of energy 
systems and the reliability of critical infrastructure.1,2 Secure, reliable grid operations are essential to limiting disruption, economic 
loss, and human hardship.1,3,4 Prolonged outages intensify social hardship by disrupting essential services for extended periods.5 
For example, extended power loss can halt refrigeration, disable medical equipment, and interrupt communication and water 
systems.6 Although prolonged outages cannot be entirely avoided, characterizing their distributional patterns and correlates can 
inform strategies that reduce their consequences and improve resilience.7,8  
 
Louisiana consistently records some of the nation’s longest outage durations.9,10 Between 2013 and 2023, the average duration 
rose 76.4 percent, increasing from 5.5 to 9.7 hours, with the sharpest increase occurring between 2019 and 2020.10 Prolonged 
outages are frequently associated with severe weather,11,12 and the state’s electric grid ranks among the least reliable nationally.11,13

Although Louisiana Public Service Commission (LPSC) regulates utilities statewide,14 service territories and ownership models 
vary by parish, producing a patchwork of operators, regulators, and service providers that add operational complexity to the 
restoration process. The institutional and network heterogeneity, coupled with rising demand,13 highlight that statewide and utility 
level metrics do not fully account for how long outages last in specific communities. Parish level evidence on the correlates of 
outage duration remains limited in the public record, even though parishes exercise meaningful authorities over customer end 
point electrical codes.15 The controlled load shed on April 26, 2025 in northwest Louisiana16 illustrates the value of finer grained 
outage report documentation and accounting, since restoration timelines were reported at a regional scale without local-specific 
duration detail.6  
 
Prior research on power outages has largely emphasized system-level reliability metrics or utility-wide restoration timelines, often 
linking outages to broad measures of weather severity. Many studies attribute the majority of outages, often 75% or more, to 
severe weather events,17–20 and examine grid level reliability under these stressors.21–23 Such studies have provided valuable insight 
into transmission line failures, distribution network resilience, and blackout mitigation.18,22,24 However, they also tend to treat 
outages as binary outcomes or rely on national or state averages, masking local variation in the duration. County and parish level 
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studies that do exist often emphasize weather3 or broad social vulnerability indicators,5 rather than grid interpretable conditions at 
the customer endpoint.  
 
This study addresses that gap by examining parish level associations with annual outage duration per household in Louisiana, 
expressed as a household level variant of the System Average Duration Index (h-SAIDI). Two weather measures were analyzed, 
severe weather damage and the frequency of events, to capture heterogeneity in local manifestation. To center analysis on the 
service interface of the distribution grid, three customer endpoint indicators were included for operational salience. The 
prevalence of mobile homes was used to operationalize household configuration and dispersed siting along radial laterals in rural 
areas. Mobile homes are the second most common housing structure and the proportion in Louisiana is over twice that of any 
other state.25. Mobile and manufactured homes may contain equipment not designed to withstand severe weather,26 which could 
prolong outages. In addition, terrain challenges in rural areas can delay restoration with poles set in marshes and exposure of 
infrastructure to dense vegetation.10 Lack of vehicle access captures physical mobility that may limit the ability to obtain alternate 
resources, maintain communications, or receive emergency services during extended outages.27  Unemployment serves as a 
contextual indicator of daytime occupancy and potential patterns in electricity demand or outage reporting,28 which could 
indirectly align with outage durations. This is pertinent as Louisiana residential customers use 46.3% more electricity than the 
average U.S. customer, and most electricity is used in air conditioning (36%), water heating (16%), and space heating (12%).11

Using five years of outage data, normalized by the number of households, and matched with event-based weather records, the 
analysis identifies patterns of outage duration that cannot be explained by weather and grid alone.  

The rest of the paper is summarized as follows. The next section outlines the data sources, variables, and statistical modelling 
techniques used to examine parish-level outage duration variation in Louisiana. The results section then summarizes parish level 
associations for severe weather damage and event frequency, and the three customer endpoint indicators. The discussion 
interprets the findings in the context of Louisiana service territories and ongoing resilience initiatives. The final section concludes 
the study with implications for future research. 
 
METHODS 
Data and variable construction 
Power outage data was collected from the Event-correlated Outage Dataset In America, located at located at 
https://catalog.data.gov/dataset/event-correlated-outage-dataset-in-america. The dataset was published by Pacific Northwest National 
Laboratory (PNNL) and derived from the Environment for Analysis of Geo-Located Energy Information (EAGLE-I) Recorded 
Electricity Outages, located at https://doi.org/10.6084/m9.figshare.24237376. The EAGLE-I platform, maintained by Oak Ridge 
National Laboratory (ORNL), was developed to provide real-time outage information for emergency response, particularly for 
Department of Energy (DOE) and other government emergency responders.29 Although not initially intended for retrospective 
data analysis, the archived EAGLE-I data have since been curated to support post hoc research into power outages and related 
topics.30,31 Catahoula Parish was present in the EAGLE-I data, indicating that outages were recorded, however, no corresponding 
events were included in the merged dataset by PNNL. This suggests that either the recorded outages did not meet thresholds 
required for event classification or were excluded during event level aggregation. Catahoula was therefore excluded from analysis 
to preserve data integrity due to the absence of qualifying outage events.   
 
The PNNL merged dataset organizes continuous outage reports into discrete events using thresholds for duration and customer 
count. Each outage event record includes a start time, duration (in hours), summary statistics describing the number of customers 
without power (min, max, and mean customers). For each parish-year, the customer outage hours were computed as the product 
of the outage duration (in hours) for each event and the mean number of customers affected. These values were then summed 
across all events for the parish year and divided by the total number of households in that parish, resulting in an annual estimate 
of outage duration per household. This metric is conceptually similar to the System Average Interruption Duration Index 
(SAIDI), a standard reliability indicator in distributed power systems.32 According to IEEE Standard 1366, SAIDI represents the 
average total duration of sustained interruptions experienced per customer over a specified period, calculated as the sum of all 
customer interruption durations divided by the total number of customers served.32 Although the IEEE standard differentiates 
between ‘interruption’ and ‘outage’, the term ‘outage’ is used in this work to remain consistent with the EAGLE-I source dataset, 
which reports power loss in terms of ‘customers out’.29 In this study, a household-level SAIDI analog was constructed by 
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summing the customer outage hours per parish-year and dividing by the number of households. Given that the majority of 
customers in Louisiana are residential (87%),11 and that a ‘customer’ generally corresponds to a metered household account,32  
dividing by the number of households results an interpretable measure of annual outage duration per household.  

Weather event data was collected from the National Centers for Environmental Information (NOAA) Storm Events Database, 
located at https://www.ncdc.noaa.gov/stormevents/, for the same years and locations as the outage data. The database contains 
significant weather events from January 1950 to April 2025 with enough intensity to cause disruption to commerce, property 
damage, injury, or loss of life.33,34 Of the forty-eight possible event types, the Louisiana data contained eight (flash flood, flood, 
heat, lightning, strong wind, storm surge, and tornado), all associated with power outages in current research1,12 and Louisiana 
state level reports.11 Two variables were derived, the number of severe weather events per parish-year (count), and the total 
monetary damage (in billions USD), representing event severity. The weather damage variable was scaled in billions to improve 
interpretability and ensure numerical stability across predictors. This dual representation recognizes that some significant weather 
events exist without documented damage, and others are associated with unequal levels of damage.  
 
These customer endpoint indicators were derived from the CDC/ATSDR Social Vulnerability Index,35 which aggregates census-
based metrics to assess resilience from disasters. The SVI has recently been used in correlation with power outage data5,12,36,37 and 
is recommended for use with EAGLE-I archival data to investigate new outage associations. 38,39 The SVI captures preparedness 
and evacuation vulnerabilities, such as a lack of transportation or inflexible work schedules, which can hinder disaster preparation 
and response.27 The years 2014, 2016, 2018, 2020, and 2022 were selected for analysis due to availability of complete parish-level 
data when merged with the NOAA and PNNL datasets.35 Initially, apartment housing (number of units in buildings with 20 or 
more dwellings) was considered due to its potential to influence grid load concentration and restoration dynamics. However, this 
variable was excluded from the final model due to high correlation with other structural indicators and low feature importance, 
discussed in the next section.  
 
The final dataset contained 310 observations for 63 parishes in the state of Louisiana across 5 years. The data was quantitative in 
nature except for the Parish name and year, which was qualitative. The outcome variable was annual outage hours per household 
(h-SAIDI), defined as the total number of customer outage-hours per year divided by the number of households in that parish. 
The covariates included severe weather damage, number of severe weather events, mobile home and unemployment prevalence, 
and lack of vehicle access. A summary of variable definitions and ranges is provided in Table 1. 
 

Variable name Definition and operationalization Range and units 
Annual outage duration per 
household (h-SAIDI) 

Outcome variable; the total number of customer hours
without power within a parish for that year (parish-year) 
divided by total number of households

0-672.150 (hours/household)

Severe weather damage Sum of property damage from outage-related severe weather 
events, per parish-year

0-7.0, in billions USD (nominal) 

Number of severe weather events A count of severe weather events per parish-year (all available 
for Louisiana: flash flood, flood, heat, hurricane,  lightning, 
strong wind, storm surge, and tornado) per parish-year 

0-40, events/year (integer count) 

Mobile homes Number of mobile home units in a parish-year divided by the 
total households in the parish-year 

0.005-0.732 (units/household)

Unemployed Number of unemployed individuals (civilians age 16+) 
divided by the total number of households in the parish-year 

0.008-0.105 (persons/household) 

No vehicle access Proportion of households without vehicle access in the 
parish-year 

0.009-0.415 (proportion, 0-1) 

Table 1. Operationalization of variables. 
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Data visualization
Prior to statistical modeling, patterns in the outcome variable were examined to better understand temporal. Figure 1 shows 
parish level patterns in mean versus median annual outage duration (h-SAIDI), highlighting important differences in outage 
profiles across the state. 

Figure 1. Mean (left) and median (right) annual outage duration per household (h-SAIDI) by parish.

In Figure 1, darker shading indicates higher values. Large mean-median gaps illuminate parishes where annual outage durations 
are driven by infrequent extreme events, whereas high values in both metrics indicate consistently prolonged outages across the 
year. Parishes such as Cameron, Allen, Calcasieu, Beauregard, and Vernon exhibit exceptionally large percentage gaps, indicating 
that infrequent but severe outage events dominate annual totals despite most outages being much shorter. In contrast, parishes 
with both high mean and median values, including LaSalle, Natchitoches, and Sabine, point to persistent reliability issues in which 
extended outages are common rather than exceptional. Quantifying these disparities helps distinguish areas where resilience 
strategies should focus on mitigating rare high impact events from those requiring systemic reliability improvements to reduce 
consistently long interruptions. 

Building on the multi-year means and medians in Figure 1, the ten parishes with the highest mean values were further examined. 
Figure 2 plots mean, median, and maximum annual outage hours per household (h-SAIDI) for the top ten parishes by maximum 
value, allowing a view of chronic outage prevalence versus acute spikes.

Figure 2.  Comparison of mean, median, and maximum annual outage duration (h-SAIDI) for the top ten parishes with the largest single year values.

As seen in Figure 2, Central Louisiana parishes experience both acute outage events as well as high median and mean values. The 
maximum value is Calcasieu, meaning the average household in Calcasieu Parish experienced a total of 672 hours without power 
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in 2020, equivalent to approximately 28 days over the course of a year, aggregated across all events. Structural hotspots appear to 
be LaSalle, Sabine, Grant, Allen, And Beauregard, where there is an overlap of high mean, median, and max. Figure 2 also shows 
that all except one of the extreme outage events occurred in 2020. The surge in 2020 aligns with an unprecedented sequence of
severe weather events, including deadly tornadoes and several hurricanes. During the Easter tornado outbreak April 12-13, 
approximately 140 tornadoes caused 32 fatalities and over 250 injuries across ten states.40 At least eight tornadoes affected 
northeast Louisiana on Easter Sunday, with approximately 458 homes damaged and 23 destroyed in Ouachita Parish. On August 
27, Hurricane Laura made landfall in Cameron Parish as a Category 4 hurricane.41 Hurricane Delta compounded the damage of 
Laura, followed by Zeta in southeastern Louisiana.42 The cumulative impact of these disasters led to extensive grid disruption and 
prolonged power outages.  

To further examine this pattern, a prominence-based peak detection filter (threshold 0.15) was applied to normalized customer 
outages in 2020. As shown in Figure 3, the most pronounced spikes occur in parishes such as Allen, Beauregard, and Calcasieu, 
reinforcing the severity of storm related disruption.

Figure 3. Customer outages per year with prominence filter = 0.1.

Interestingly, not all high-exposure areas exhibited elevated outage severity. As shown in Figure 4, Bossier Parish experienced the 
highest number of severe weather events in 2020 but reported few outages and minimal damage. This contrast suggests that 
outage duration reflects not only reflects severe weather damage or event frequency, but also by underlying system conditions and 
recovery capacity. 
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Figure 4.  Annual outage hours per household vs number of weather events in 2020 (colored by damage).

Dimension reduction and descriptive statistics
All analyses were conducted in Python 3.12 using scikit-learn and statsmodels libraries unless otherwise specified. A Lasso 
regression regularization technique with standardized values was used to reduce dimensionality by identifying redundant or 
irrelevant features. This technique aligns well with linear regression models and penalizes less informative variables. The resulting 
feature weights ranked from highest to lowest were: weather damage (42.067), mobile homes (11.865), unemployed (-8.538), no 
vehicle (-7.898), number of weather events (7.773), and apartment (-3.415). Weather damage and mobile homes emerged as 
dominant linear features, while unemployed and no vehicle access were negatively associated with power outage burden. For 
robustness, a random forest regressor was used to compute permutation-based feature importances. As shown in Figure 5, the 
random forest confirmed weather damage as the most influential feature across both linear and nonlinear models, and suggested
that the influence of mobile home prevalence was more linear than nonlinear in nature.

Figure 5. Permutation feature importances.

Table 2 displays descriptive statistics and Pearson correlation coefficients for the variables, including the dependent variable 
annual outage duration per household. As expected, the dependent variable showed strong correlation with weather damage, and 
significant correlations with other predictors. The independent variables were weakly correlated, with the exception of a modest 
negative association between no vehicle access and the number of weather events. To further evaluate predictor independence, a 
variance inflation factor (VIF) test was performed. The mean VIF for the model was 1.339, with the highest being 3.702 for the 
unemployment variable. All VIF values were well below the common threshold of ten, suggesting that multicollinearity was not a 
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concern.43 
 

Variables Mean Std. Dev. 1 2 3 4 5 6 
1   Annual outage duration per 
household (h-SAIDI)

29.453 76.619 1.00

2   Mobile home 0.259 0.126 0.15** 1.00     
3   Unemployed 0.037 0.013 -0.15*** -0.09* 1.00    
4   No vehicle 0.141 0.120 -0.13** -0.02 -0.11* 1.00
5   Num weather events 4.784 5.531 0.10* -0.03 -0.18*** 0.05 1.00  
6   Weather damage 0.074 0.463 0.53*** -0.08 -0.04 -0.10* 0.01 1.00

Table 2. Descriptive statistics and Pearson correlation coefficients (n = 320).  *p < 0.10; **p<0.05; ***p<0.01 

The descriptive statistics indicate a right skew in the annual customer outage hours per household, with several parish-years 
exhibiting extreme values relative to the mean. This distribution reflects the cumulative nature of outage durations and the varying 
scale of service interruptions across Louisiana parishes over time. 
 
While Table 2 reports bivariate Pearson correlations, these measures do not account for interrelationships among the variables in 
the study. Several variables are moderately correlated, and examining them in isolation could obscure or inflate their apparent 
relationships with the outage duration per household. To address this, a generalized linear model (GLM) with a Gamma 
distribution and log link was estimated, appropriate for the positive, right-skewed distribution of annual outage duration per 
household. The GLM quantifies the statistical association of each variable with annual outage duration per household while 
adjusting for the others, providing partial association estimates that are robust to multicollinearity and more accurately reflect the 
complexity of the observed patterns.  

RESULTS 
The GLM was implemented with a Gamma distribution, log link, and heteroskedasticity-consistent (HC3) standard errors using 
Python version 3.12 and the statsmodels package version 0.14.1. Model estimation used iteratively reweighted least squares 
(IRLS), a standard maximum likelihood estimation technique for GLM that accounts for non-normally distributed outcomes and 
applies link functions to transform the expected value of the dependent variable. The Gamma-log specification models the 
logarithm of the expected outcome, enabling multiplicative interpretation of predictor effects while ensuring strictly positive 
predicted values. This modeling approach complements the correlation analysis by identifying which associations remain 
statistically significant in a multivariable structure and by estimating their relative magnitudes after adjusting for other variables in 
the model. Table 3 presents the estimated coefficients, standard errors, and significance levels for each explanatory variable. 
 

Variables Coef. Std. Error z stat p value 
1   Intercept 2.916*** 0.462 6.312 0.000
2   Mobile home 2.281** 0.851 2.680 0.007
3   Unemployed -19.568* 8.255 -2.239 0.018
4   No vehicle -2.329* 0.901 -2.208 0.010
5   Num weather events 0.068** 0.020 3.310 0.001
6   Weather damage 1.999*** 0.233 9.179 0.000

Table 3. Summary of coefficients and significance levels from the GLM for annual outage duration per household in Louisiana.  *p < 0.05; 
**p<0.01; ***p<0.001 

The model achieved a Cox-Snell pseudo R2 of 0.225, indicating moderate fit. McFadden’s pseudo R2 was 0.032, consistent with 
conservative fit statistics in Gamma GLMs with high-dispersion outcomes. The Pearson chi-squared statistic of 1070 with 304 
degrees of freedom, resulting moderate dispersion with a factor of approximately 3.52. Robust standard errors were used to 
account for heteroskedasticity. Five high outage parishes (Allen, Orleans, Evangeline, and Jefferson parishes in 2020, Cameron 
parish in 2018) are largely responsible for the dispersion value. Allen parish in 2020 is the largest outlier, with observed outage 
hours greater than thirteen times higher than the fitted value. Attempts to fit a more flexible Tweedie GLM resulted in inferior 
model fit (Pearson chi-square value of 6100, lower log-likelihood), suggesting the Gamma distribution remained the best option 
for this dataset. Model interpretation thus focused on coefficients and directionality of effects.  
 



American Journal of  www.ajuronl ine.org

Volume 22 | Issue 3 | September 2025  88

As shown in Table 3, all predictors were statistically significant at the 0.05 level of significance. Weather damage and prevalence 
of mobile homes were the strongest predictors, corresponding to multiplicative increases in expected annual outage hours per 
household of approximately 7.38 times and 9.78 times, respectively. In a Gamma log model, each coefficient in the model 
represents the natural log of the multiplicative change in the expected value of outages per household for a one unit increase in 

that predictor, which makes the multiplicative factor , therefore e1.999 = 7.38 and e2.281 = 9.78. Unemployment rate and 
proportions of households without vehicles were both negatively associated with outage rates. Each additional extreme weather 
event corresponded to an approximate 7.0% increase in expected annual outage hours per household (e0.068 – 1). .  
 
DISCUSSION 
Weather damage exhibited the largest positive association with annual outage duration per household (coef. = 1.99, p < 0.001), 
indicating that parishes experiencing greater financial loss from severe weather events also tended to experience longer cumulative 
outages. The number of severe weather events was also positive but substantially smaller in magnitude (coef. = 0.068, p = 0.001). 
Because coefficients are on the link scale of the Gamma GLM, magnitudes are not comparable across differently scaled 
covariates; the consistent result is that weather damage is more salient than the frequency of events. Figure 6 shows the same 
pattern spatially and reveals a geographic contrast. The year 2020 was selected because it exhibits the largest aggregate weather 
damage and the widest cross-parish dispersion, maximizing contrast for assessing associations between severe weather and outage 
durations.  
  

Figure 6. Severe weather factors associated with annual outage duration per household (h-SAIDI), 2020. 

In Figure 6, high damage areas co-locate with elevated h-SAIDI, whereas high event counts alone do not imply long outages.  In 
the northwest, for example, Bossier Parish records many events but comparatively low damage and short outage duration. That 
geography aligns with institutional anchors and recent resilience activity. For example, Barksdale Air Force Base’s energy resilience 
efforts include reducing energy consumption, addressing waste, upgrading or replacing systems, retrofitting fixtures and controls, 
and implementing backups and redundancy.44,45 Louisiana’s new Hubs for Energy Resilient Energy Operations (HERO) is 
seeding additional capabilities (e.g., a deployable battery hub in Bossier City) alongside pilots in Baton Rouge, Lafayette, New 
Orleans, and elsewhere.46 In the Baton Rouge-Lafayette corridor, Louisiana State University (LSU)-led efforts on resilience further 
situate those metros as nodes of planning and restoration capacity, which is consistent with locales in Figure 6 that show damage 
but relatively modest h-SAIDI.47

 
The prevalence of mobile homes was the second largest positive association with annual outage duration in the model (coef. = 
2.281, p = 0.007). Concentrations of mobile homes imply differences in grid service configuration and restoration logistics, 
including exposed connection points, and vegetation proximity,10 which can increase the time required to restore power. In 
addition, mobile homes may not be readily accessible by interstate or public transportation, and clustered in communities, which 
may increase the number of households experiencing and reporting outages.48 Figure 7 shows an overlay of mobile home 
prevalence with the contemporaneous outage hours per household (h-SAIDI). The year 2020 is retained for temporal 
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correspondence with Figure 6, since mobile home prevalence varies little across years, and parish means and medians show a 
similar pattern. 

Figure 7. Annual outage duration (h-SAIDI) and mobile home prevalence in Louisiana parishes, 2020.

Figure 7 shows a clear concentration of higher annual outage hours per household in a west-central and southwest 
corridor, including Calcasieu, Cameron, Beauregard, Allen, and Vernon, with adjacent parishes also elevated. The striped 
overlay marks parishes in the upper quartile of mobile-home share, and the purple markers identify those in which both 
outage duration is high and mobile home share meets the threshold indicated in the legend. Jointly elevated parishes form 
a defensible priority set for reliability improvements and response and restoration investments. These could include 
hardening feeder lines, sectionalizing and switching, vegetation management, subsidizing repairs and mobile home 
upgrades and assisting communities with resources such as generators.49

The negative association of unemployment with annual outage duration (coef. = -19.56, p = 0.018) was unexpected. One 
possible explanation is that it is attributable to network design and restoration logistics rather than household occupancy. 
Five year median maps show higher unemployment concentrated along the Interstate-10 and Mississippi corridor and 
adjacent urbanized parishes where more dense service areas exist (Figure 8). Restoration may proceed faster where 
distribution feeders are shorter, redundancy is greater, and repairs restore service to more customers per action.5,50  Rural 
cooperative territories, by contrast, rely on long radial systems through difficult terrain, and comparable work restores 
fewer households and prolongs duration. 

Figure 8. Five year median comparison of unemployed and annual outage duration per parish.

Two descriptive checks support this interpretation. First, a cross-sectional plot of parish medians shows a weak negative 
correlation between unemployment and the annual outage duration per household (Figure 9a; r = -0.11). Second, 
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stratifying by utility company class51 and comparing with a Mann-Whitney U test shows substantially higher median 
annual outage hours in cooperative territories than those that are investor owned (Figure 9b). 

Figure 9. (a) Cross-sectional correlation of unemployment vs h-SAIDI (medians), coded by utility class; (b) Annual outage duration (h-SAIDI) medians 
by utility class.

For further testing, the unemployed variable was decomposed into a between-parish component and a within-parish 
component (annual deviation from the median). The within-parish plot of and -SAIDI and a locally 
weighted scatterplot (LOWESS) smoothing function52 (Figure 10a) exhibits only a shallow downward trend. Stratifying 
by weather damage tertiles produces similarly weak gradients (Figure 10b). Taken together, the checks suggests that 
unemployment functions as a contextual proxy for utility operational network characteristics rather than household 
daytime occupancy.

Figure 10. (a) Within parish deviations after subtracting the mean (2014-2022); (b) Stratified association by weather damage.

Similarly, the results showed negative association with lack of vehicle access (coef. = -2.32, p = 0.010). This could also be 
explained by concentrations of carless households in urban areas48 where grid topology and operations favor faster restoration. A 
violin plot of medians with 95% bootstrap percentile confidence intervals (B=3000 resamples) shows a marked increase in the 
proportion of households without a vehicle in 2022 (Figure 11). 
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Figure 11. Violin plot by year with medians and 95% bootstrap percentile confidence intervals.

The medians of the parish distributions in Figure 11 for 2014-2022 were 0.0837, 0.0797, 0.0728, and 0.0807, and 0.03724, 
respectively. Across years, distributions differ significantly by a Kruskal-Wallis H test (H=151.12, df=4, n=310, p = 1.17 x 10-31) 
with a large effect size 2 = 0.482.53 The 2022 median is 0.0373 [0.365, 0.377], whereas 2014-2020 medians cluster near 0.08, 
indicating a substantial left shift in the cross section. The apparent 2022 divergence may reflect compounding factors between 
2020 and 2022, including pandemic-era economic dislocation, changes in household composition, and recovery dynamics 
following the severe 2021 hurricane season. Weather damage, displacement, and relocation into denser housing, often in urban 
areas with lower vehicle ownership, could have shifted parish level rates upward. Importantly, this shift does not alter the 
association with outage duration; rather, it reinforces that no vehicle access likely proxies distribution network density and 
restoration dynamics, instead of household mobility.

Overall, the results show that severe weather and customer endpoint conditions jointly structure outage duration at local scale. 
The strongest positive association of severe weather damage with outage duration is consistent with reliability theory, where
restoration time reflects actual failure, not a count of events.54 This explains cases like parishes with many events but low damage 
that do not experience long durations. The customer endpoint conditions at the household level add explanatory power beyond 
severe weather. Mobile homes emerge as the second largest correlate, which supports a distribution edge perspective of slower 
restoration times with longer feeders and slower sectionalized restoration. The negative associations for no vehicle access and 
unemployment are consistent with spatial concentration of these indicators in urbanized service territories characterized by 
shorter spans, higher meshing, and switching operations reduce duration. 

CONCLUSIONS
This study examined parish-level outage duration per household in Louisiana by integrating event correlated outage records, 
severe weather measures, and customer endpoint indicators across 63 Louisiana parishes from 2014 to 2022. Outage durations 
were not uniformly distributed, even among parishes with similar counts of severe weather events, indicating substantive local 
variation consistent with difference in distribution network characteristics and conditions at the service interface. A Gamma 
regression model with a log link and robust errors was used to estimate associations, complemented by spatial and distributional 
summaries and nonparametric checks. Damage from severe weather was identified as the strongest positive correlate of the 
household level outage duration, while event frequency was not consistently aligned with duration. The prevalence of mobile 
homes was positively associated with outage duration; unemployment and lack of vehicle access were negatively associated, 
consistent with the operational advantages of robust distribution networks.55

This study findings contribute to ongoing grid resilience efforts by indicating where targeted actions are likely to reduce long 
durations. High priority areas are those where severe weather damage and mobile home prevalence coincide along long radial 
feeders; actions include added sectionalizing and reclosers, vegetation management, and conductor and pole upgrades, with 
selective consideration of microgrids. In regions with high unemployment or limited vehicle access, complementary strategies 
include pre-positioned backup power sources, walkable access to relief sites, and shared service centers with refrigeration or 
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charging capabilities. Standardized sub-parish outage reporting would improve accounting that supports resilience investment 
decisions Future work should incorporate operational utility data such as feeder topology, switching and outage management logs, 
vegetation cycles, and asset age, extend analysis to sub-parish circuits and event level timelines, compare provider classes, and 
evaluate targeted interventions longitudinally.  
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PRESS SUMMARY 
Power outages are lasting longer and occurring more frequently across the United States, raising concerns about the reliability of 
regional energy systems. While previous studies have focused on severe weather and overall grid performance, few have examined 
how customer endpoint conditions shape outage duration at the distribution edge. This study analyzed data from 63 parishes in 
Louisiana and found that severe weather damage and prevalence of mobile homes were strongly associated with of higher outage 
duration, whereas unemployment and limited vehicle access showed negative associations. These findings highlight the 
importance of planning for resilience by accounting for both severe weather and localized customer endpoint conditions.  


