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ABSTRACT 
This study examines the use of a large language model (LLM), specifically ChatGPT 3.5, to train novice formulators in the 
development of personal care products. The aim is to assess the LLM’s ability to guide students as they formulate a 10-minute 
hydrating face mask. The research explores how effectively students can rely on the LLM for ingredient substitutions and recipe 
adjustments during an iterative formulation process, with the goal of producing a high-quality or improved product. Results 
indicate that while ChatGPT 3.5 demonstrates above-average chemistry knowledge and can provide useful suggestions when 
prompted clearly, it has significant limitations. These include unreliable memory in extended conversations and difficulty with 
precise mathematical calculations, particularly for ingredient adjustments. For example, the LLM’s limited memory hindered its 
ability to incorporate information from earlier iterations, often resulting in redundant or inconsistent recommendations. To 
address these calculation errors, in-house code was developed to ensure formulation accuracy. Additionally, the LLM’s 
contribution to cost optimization was minimal, and it struggled to identify complex formulation components that trained 
formulators would typically recognize. Although the LLM supported rapid initial product development, it was less effective in 
more advanced stages, including cost optimization and refining complex components. 
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INTRODUCTION 
The landscape of personal care product development is complex and multifaceted, involving a delicate balance of ingredient 
choices,1 manufacturing processes, and consumer demands. Successful formulation requires careful consideration of efficacy, 
safety, and consumer appeal. With rising costs and growing demand for innovation, there is an increasing need for methods that 
streamline development while optimizing both performance and cost. Emerging technologies, particularly machine learning, offer 
promising solutions by introducing novel approaches to formulation and development. Prior studies have demonstrated the role 
of artificial intelligence (AI) in optimizing formulations for experienced professionals.1, 2 AI-driven ingredient selection has been 
explored in both pharmaceutical and personal care industries, where it has improved efficiency and accelerated development. 
However, these applications have primarily focused on expert users rather than novice formulators. This research shifts that focus 
to educational contexts, exploring whether large language models (LLMs) can assist students with limited formulation experience. 
This aligns with research by Webb et al., which suggests that LLMs can facilitate learning by engaging users in structured problem-
solving.3 Building on these findings, this work evaluates whether LLMs can enhance formulation training and highlights both their 
potential and limitations. 
 
While Artrith et al. discuss the challenges of applying machine learning in chemistry, particularly data reliability and 
reproducibility,4 these issues remain underexplored in the context of student training. Machine learning models require robust 
datasets and specialized algorithms,4-7 but the extent to which LLMs can assist novice users in experimental design and ingredient 
optimization has not been well studied. This project aims to bridge that gap by assessing how LLM-generated suggestions align 
with experimental outcomes and whether structured prompting strategies can mitigate common limitations. LLMs are proficient 
in tasks involving pattern recognition, analogy, and abstract reasoning.3 These models can process large volumes of information 
and generate coherent outputs aligned with user instructions. However, the rapid shifts in personal care formulation—driven by 
ingredient availability, regulatory changes, and consumer trends—make integration of LLMs challenging. Effective use of LLMs 



American Journal of Undergraduate Research www.ajuronline.org

 Volume 22 | Issue 2 | June 2025  82

depends heavily on structured prompting.8, 9 This research examines how novice formulators adapt prompt engineering 
techniques to improve the usefulness of LLM-generated suggestions. 
 
This study explores the use of LLMs to propose changes to an initial product formula for a 10-minute hydrating facemask and 
examines their effectiveness as a tool for novice formulators. Through an iterative process of LLM-guided ingredient substitutions 
and experimental testing, it was assessed how well LLMs can support formulation training in an educational setting. The findings 
provide insight into the viability of LLMs as a guide for student formulators in producing quality formulations while identifying 
their inherent limitations. The significance of this work extends beyond the formulation of a single product, offering valuable 
insights for prospective formulators, formulation chemists, and educators involved in training students in laboratory settings. 
 
METHODS AND PROCEDURES 
 
Machine Learning Preface  
The use of LLMs in scientific research has prompted calls for rigorous standards to ensure repeatability and maintain scientific 
integrity.4 In typical experiments, the dependent variable is observed, while the independent variable is manipulated. However, 
LLM-based experiments introduce a challenge: if the dependent variable is the input prompt and the independent variable is the 
LLM output, the reproducibility of results may be questioned due to the variability and lack of standardization in LLM responses. 
Artrith et al. emphasize that machine learning-driven experiments in chemistry must adhere to rigorous documentation protocols 
to ensure reproducibility. This is particularly relevant for LLM-based formulation studies, where variations in responses can 
impact experimental reliability.4 
 
In this study, the LLM’s responses to prompts were not considered direct data points but were treated as independent variables. 
The dependent variable was the resulting product specifications derived from the efforts of the students following the LLM-
generated suggestions. As such, the primary measure of success was not the content of the LLM responses but rather the quality 
and speed of product development when LLM-generated directions were followed. Webb et al. highlight how LLMs can enhance 
problem-solving by engaging users in structured iterations, making them well-suited for assisting novice formulators in 
experimental adjustments.3 Thus, the fitness of the final product is the data used to evaluate the LLM’s utility as a tool for 
enhancing the formulation process, particularly in the hands of novice student formulators. 
 
The formulation process, in this context, is defined as transforming an initial recipe into a final product. An improvement in this 
process is observed when a product with better specifications is created in a shorter time using LLM-generated instructions. 
Given the limitations of LLMs in numerical accuracy,10 qualitative assessments are necessary to determine the practicality of LLM-
generated formulation strategies. This approach aligns with common industry practices where sensory characteristics and stability 
are key determinants of product success. Although much of this work involves qualitative or semi-quantitative assessments, such 
evaluations are common in the development of personal care products. The specifications of the resulting product, as the 
formulation process proceeds, serve as an indicator of the LLM’s effectiveness in training novice formulators. 
 
Machine Learning for Formula Generation 
The LLM utilized was ChatGPT, which is currently free and open source to the public.11 Although other LLMs were considered, 
the most likely contenders considered were: 1) Agent GPT: https://agentgpt.reworkd.ai/, 2) Literally Anything 
https://www.literallyanything.io/, and 3) Ora: https://ora.ai/dashboard. ChatGPT 3.5 was chosen because of its popularity, familiarity, 
and because it is currently always free.12 It is unlikely, however, that ChatGPT 3.5 is inherently superior to the other three 
platforms, or potentially many others, for this specific task. 
 
ChatGPT 3.5, based on the GPT-3.5 architecture, has a stated prompt limit of approximately 600 words.13 As a natural language 
processing model, it excels at generating human-like text in multiple languages.14 Its capabilities include content creation, 
answering conceptual questions, assembling explanations, and assisting with basic coding tasks.11 ChatGPT 3.5’s knowledge base 
is limited to information available up to January 2022, and it lacks the ability to process human emotions or experiences.11 Because 
its responses are generated from pattern recognition rather than reasoning, independent verification of all output is essential. One 
of the model’s most significant shortcomings in chemical formulation is its inaccuracy in performing calculations and its tendency 
to fabricate references and content.11 
 
To compensate for these weaknesses and maintain repeatability when making decisions about formula changes based on LLM 
feedback, Artrith et al. recommend following a checklist when using LLM tools in chemistry. They recommend that each 
researcher establish a mechanism for clear results and reporting when using LLM models like ChatGPT.4 These mechanisms 
could be considered when documenting any formulation adjustments made by LLM. This includes, most importantly, fact-
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checking suggestions by searching for the chemical names in publicly available libraries to ensure the safety of the components 
and weighing the environmental and consumer experience impact before adopting any changes. 
 
Formula Synthesis  
This study began with a base formula for a face mask provided by a local professional cosmetic chemist. The face mask was 
designed to be applied for 10 minutes and washed off with water. While not intended as an overnight mask, the formula was safe 
enough that leaving it on for longer would not pose any issues. Additionally, the product was versatile enough to be used as a 
moisturizing lotion for hands or body, rather than solely as a face mask.  
 
With this initial formula, three sets of LLM experiments were proposed. The first experiment employed an LLM to generate a 
modified version of this formula, utilizing existing materials, to act as the starting formula for subsequent experiments. Identifying 
the role of each ingredient in the original formula was a subset of this experiment. Identifying formula replacements that met 
desired specifications was the focus of the second set of experiments. Following the models’ recommendations, products were 
formulated using the suggested ingredients, and the resulting formulas were analyzed for properties such as specification 
adherence, stability, and microbial resistance. The third set of experiments was focused on lowering the cost of the product while 
maintaining the quality of the desired specifications. The prompts in this set of experiments attempted to blend price findings 
through research outside the LLMs with the feedback provided by the LLMs.  
 
Figure 1 illustrates the progression of these ingredient modifications across multiple iterations. The initial base formula was 
adjusted based on LLM recommendations to match available ingredients, and subsequent iterations incorporated additional 
refinements. The flowchart highlights how certain substitutions, such as emulsifiers and humectants, were optimized in response 
to experimental observations. 
 
When an LLM generates false information or miscalculates data it is commonly known as a hallucination. Multiple codes were 
written to correct mathematical hallucinations associated with the formula suggestions. Castro et al. demonstrated that ChatGPT 
does not always provide curated data and that it struggles with understanding the context of chemistry prompts.15 During 
experimentation, the LLM-created recipe iterations were provided in a format that did not translate directly to lab work. To test 
these recipe iterations, a code was created that translated the LLM recipe formula into percentages and grams to ensure the 
required mass of the suggested substitution and to verify the desired total mass of material was created.  
 
Testing Different Iterations   
Ten novice student formulators, divided into groups of two or three, were tasked with creating multiple iterations of a recipe 
using an LLM. Different groups were responsible for generating each iteration, with some recipes duplicated for comparison 
purposes. During this process, different formulators were trained in the production of the base formula and how to query LLM to 
make changes to the formula based on specification enhancements or cost. Gradual refinements in wording, structure, and 
information included in prompts led to the development of a prompt template which helped maintain consistency in the 
information fed to the LLM across different inquiries. The template, found in Table 1, remained fluid and was updated as 
necessary throughout the experimentation. 
 
Once an iteration was completed, it was passed to another individual for specification testing. To ensure consistency and maintain 
specification integrity, one individual consistently performed this testing. While this aspect introduced some subjectivity, efforts 
were made to standardize the process by providing clear guidelines for evaluation to ensure consistency. The qualitative properties 
evaluated included odor, skin hydration, and after-wash effect, along with any other noticeable differences between recipes. 
Additionally, the pH and viscosity of the iterations were measured. The iteration viscosities were measured using an NDJ-5S 
digital viscometer, with readings taken immediately after the probe was immersed in the sample and again after two minutes. The 
pH was measured using a pH indicator paper. The cost per item and batch were recorded for each iteration produced.  
 
Following qualitative testing, each formula underwent quality control assessments for microbial growth and stability. Upon 
completing these tests, each iteration was subject to one of two pathways: (1) if undesirable changes were detected, the formula 
was returned for further LLM adjustments; or (2) if the changes were favorable, the formula was presented to the remaining 
formulators (n=10) and a small set of consumers (n=4) for additional feedback. This feedback informed future decisions and 
directed further LLM iterations, continuously refining the recipe.  
 
Formula Testing  
To ensure the formulas created were stable and microbe resistant, challenges were performed regarding the stability and microbe 
propagation of the formula. These were used to get a general direction needed in terms of ingredients used in an LLM prompt. 
The stability test was a one-week test at 50°C with no added humidity. The product was well covered, and dehydration resulted in 
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condensation of water on the top of the container and an expansion of the container lid, indicating a slight increase in the 
pressure on the sample and a decrease in the product’s water content as the challenge proceeded. The micro challenge was 
performed by inoculating 5 mL of sterile Luria–Bertani (LB) medium with approximately 50 μL of the product to be challenged. 
The resulting mixture was swirled at 37°C for 24 hours, and the sample’s clarity and odor were observed. Bacterial growth was 
also detected in control samples to verify that the method was reliable. If there was any question about whether microbial growth 
was occurring, the clarity of the solution was quantified using a visible spectrometer to monitor the solution’s absorbance at 600 
nm.  
 

General Template Used for LLM Prompts 

The following text is the recipe for a gel-based cosmetic face mask: 
Purified water: 70.65% 
EDTA: 0.15% 
Glycerin: 6.00% 
Butylene Glycol: 3.00% 
Xanthan gum: 0.6% 
Guar Gum: 0.6% 
AntiMicrobial Banana mixture: 0.90% 
Sodium Lauryl Sulfate: 1.00% 
Mango Butter: 3.00% 
Olive Oil: 5.00% 
Coconut Oil: 6.00% 
Vitamin E: 0.50% 
Polyglyceryl Oleate: 2.00% 
Papaya Banana: 0.10% 
Protein-Hyaluronate blend: 0.50% 
 
The desired yield of this recipe is 50 grams. 
 
Suggest alterations to this recipe based on the following criteria: 
 
*USER TEXT HERE* 

Table 1. Standardized prompt template used to generate LLM-driven formulation suggestions. Ingredient percentages reflect a typical starting point, and the 
“USER TEXT HERE” placeholder indicates where students inserted specific formulation goals (e.g., ingredient substitution, cost reduction). This consistent 
structure improved the quality and relevance of LLM responses across iterative experiments. 
 
RESULTS 
The LLM was successful in adjusting a base recipe of a cosmetic formula to achieve a stable starting point from a provided library. 
Figure 1 demonstrates the ingredient evolution from the base recipe to an optimized formulation. This process involved 
systematic substitutions and adjustments in emulsifiers, stabilizers, and active ingredients, ultimately leading to a more refined final 
product. In total, approximately 19 LLM-driven iterations of the altered formula were produced, with 17 of the iterations chosen 
for further analysis. These iterations demonstrated LLM’s effective proposition of adjustments to a recipe, leading to a sellable 
product after two iterations. Additionally, iteration 17 formulated using LLM suggestions created a product that closely aligned 
with the ideal specifications (see Table 2). It is important to note that formulators relied on a template prompt to achieve these 
results (see Table 1). This improved both the memory and relevance of the LLM response by maintaining consistent information 
input. Although generated iterations typically produced a change in the product specifications, this change wasn’t always an 
improvement on previous iterations. The quantitative and qualitative data collected from the iterations are summarized in Table 
2. Stability testing revealed some stability issues in the iterations produced. For example, sample five exhibited significant 
separation after the stability challenge (see Figure 2). The absence of certain materials may have influenced the results, as not all 
formulations suggested by the LLM could be tested. Still, this process provided significant value by highlighting areas for specific 
improvements in the formulation, demonstrating how the LLM can accelerate product development, even with a restricted 
material set.  
 
The LLM’s ability to retain information from previous interactions, even within the same chat session, was limited. This 
prevented the LLM from leveraging information from previous discussions or remembering past formulations to make more 
complex decisions based on previous results. However, this can be avoided by using prompt engineering software.16 Specifically, 
prompt engineering techniques, such as incorporating key information from previous interactions into subsequent prompts or 
using a structured template to ensure consistency in the input provided to the LLM could have potentially improved the model’s 
ability to retain the relevant information throughout the iterative process. However, due to the exploratory nature of this initial 
study, these techniques were not fully implemented.  
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It is important to note that the limitations discussed in this study, particularly the LLM’s difficulty with memory retention, 
mathematical calculations, and contextual reasoning, reflect the specific performance of ChatGPT version 3.5, which was the 
model used during the research period. Since then, newer iterations have demonstrated substantial improvements in these areas, 
including better internal memory within sessions, greater numerical accuracy, and enhanced capacity for multi-step reasoning. 
While these advancements may mitigate some of the challenges observed here, the findings remain relevant for educators and  
researchers working with freely available or entry-level models. Future studies could evaluate whether newer LLMs offer more 
robust support for formulation training and how their capabilities shift the balance between student autonomy and model 
oversight. 
 

Figure 1: Flowchart illustrating ingredient modifications across multiple formulation iterations, guided by LLM suggestions. The "Provided Base Recipe" 
represents the original formulation supplied by a professional formulator. The "LLM Adjusted" column shows the initial modified formula created by ChatGPT 
using only available ingredients. Each subsequent column reflects a single iteration, highlighting only the ingredient changes from the previous version. These 
modifications aimed to improve specific product characteristics such as viscosity, stability, and cost-efficiency. 
 
The improvements seen in later iterations may be partially attributed to the growing use of the structured prompt format outlined 
in Table 1, which helped reduce variability in LLM output despite its memory limitations. This led to the consensus that the LLM 
excelled at generating ideas for quick adjustments based on the immediate prompt but lacked the ability to contribute effectively 
to the iterative adjustments typically made during the formulation process, where precise, data-driven refinements are required. As 
such, it was concluded that the value the LLM brings to the process is enhanced by the level of formulation training of the user 
overseeing its responses. This also began to be apparent that as the level of training of the user increased the level of use of the 
LLM in the initiation of a product decreased. Future research should prioritize the integration of prompt engineering strategies to 
enhance the effectiveness of LLMs in formulation development in the hands of novice formulators to further test the use of an 
LLM for formulator training. 
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While this study primarily relied on qualitative and semi-quantitative assessments typical of educational formulation work, future 
research could benefit from incorporating more robust, standardized quantitative metrics. Many of these, such as rheological 
profiling over time, spectrophotometric clarity measurements, and microbial challenge testing with standardized colony counts, 
are already widely used by professional formulators to assess whether a product meets desired performance and stability criteria. 
In industry, these technical evaluations are often paired with structured customer feedback to refine products based on sensory 
attributes, user experience, and consumer satisfaction. Although implementing such detailed analyses and consumer testing may 
be impractical in most classroom settings with limited time and resources, introducing students to the principles behind these 
processes—even through informal peer reviews or simplified surveys—can help bridge the gap between educational experiences 
and industry expectations. Incorporating these more quantitative elements into extended student projects or choosing one or two 
in advanced formulation courses could enhance scientific rigor, deepen student engagement, and strengthen the applicability of 
LLM-guided formulation training. 
 

 
Figure 2. Photographic comparison of six sample formulations (iterations 3, 5, 8, 10, 11, and 12) before (top two rows) and after (bottom two rows) undergoing a 
one-week stability challenge at 50ºC. Each sample was visually assessed for phase separation, with sample five showing notable instability post-challenge. This 
separation indicates breakdown in the emulsion or thickener performance. Abbreviations: XG = xanthan gum, GG = guar gum, SLS = sodium lauryl sulfate. 
These visual results align with semi-quantitative stability data in Table 2. 
 
In observations of the LLM, it was also noted that there existed potential issues with how these models handle longer prompts. 
While it is well-documented that LLMs have a maximum limit for processing input, the findings from this research suggest that 
ChatGPT may not always recognize when a prompt exceeds its limit, resulting in an unintended focus on the latter sections of the 
input. This could imply that the model's limit might function in a manner that prioritizes the end of the prompt, effectively 

8) XG & GG 
50/50 mixture 
1.2% total weight 

12) Changed SLS 
to Polyglucose as 
emulsifying 
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applying the limit in reverse order from the conclusion of the input back toward the beginning. For instance, using the prompts 
from Table 3, when asked “What is a good replacement for xanthan gum in a face mask lotion?”, ChatGPT suggested guar gum 
as a replacement. However, it did not specify how this substitution would be incorporated into the recipe, such as providing the 
required mass or percentage to maintain the desired consistency. 
 
To further illustrate the potential impact of prompt length, ChatGPT’s responses were compared between a shorter prompt and a 
longer prompt (see Table 3). The shorter prompt focused solely on identifying a replacement for xanthan gum. In contrast, the 
longer prompt included additional information about the other ingredients and their proportions in the recipe, as well as the 
desired total mass of the final product. It is important to note that this observation is based on empirical experiences and has not 
been previously documented in existing literature. Given the lack of comprehensive studies on this phenomenon, it would be 
beneficial for future research to investigate this behavior more thoroughly. If no additional research exists and these observations 
remain unique, providing further evidence or specific examples is recommended to substantiate this claim within the broader 
context of LLM limitations. 
 
The time students took to complete each formulation iteration served as a key metric for assessing their learning and the 
effectiveness of LLM assistance. As students progressed through multiple iterations, a trend emerged where earlier formulations 
took significantly longer to complete, while later formulations were completed more efficiently. This decrease in time suggests 
that students became more adept at interpreting LLM-generated suggestions, refining their prompts, and identifying which 
formulation spaces were worth further exploration. Additionally, the time taken for each iteration reflects the iterative nature of 
formulation training, where trial and error are an essential part of the learning process. The students who quickly identified viable 
formulation paths were able to iterate more frequently, thereby improving their understanding of ingredient functionality and 
substitution strategies. 
 
While the quality of the final product is inherently subjective, Table 2 provides a structured, semi-quantitative framework to 
assess formulation performance relative to time and iteration count. The number of iterations a student required before achieving 
a product that met the desired specifications serves as an indicator of their increasing proficiency. These outcomes can be tracked 
across iterations in Table 2, which reveals how both qualitative and quantitative measures evolved alongside student skill 
development. Furthermore, even unsuccessful formulations contributed valuable insights, as they helped students identify which 
formulation pathways were unproductive and should not be further explored. This aspect of the study highlights how LLM-
driven formulation training is not solely about achieving an ideal final product but also about developing strategic decision-making 
skills in the formulation process. By capturing the relationship between iteration count, time efficiency, and formulation 
refinement, this study offers a repeatable method for assessing student learning in any future application of LLM-assisted 
formulation training. 
 
While the time required to complete each formulation iteration demonstrated a clear trend of improvement, it is important to 
acknowledge that several factors influenced the time required for each round of formulation. Variables such as familiarity with 
laboratory procedures, confidence in interpreting LLM-generated responses, and complexity of the formulation changes requested 
all played a role in determining how quickly students were able to complete their assigned tasks. Additionally, external factors, 
including group dynamics, laboratory setup, and availability of materials, could introduce variability in the time required for each 
round. The recorded times, therefore, should not be interpreted as rigid, highly controlled measurements but rather as general 
indicators of increasing efficiency in novice formulators as they became more proficient with LLM-assisted formulation. 
 
Despite these inherent variations, a clear progression in efficiency was observed across the four rounds of formulation 
experiments. In the first round, where the entire class collaborated on a single formula, the process took over 120 minutes as 
students navigated the fundamental aspects of formulation and LLM-assisted ingredient substitution for the first time. In the 
second round, smaller groups of two to three students worked independently to replicate the same formulation, significantly 
reducing the required time to approximately 90 minutes per group. By the third effort, multiple groups worked on different 
formulations simultaneously, with no group requiring more than an hour to complete their assigned recipe. By the fourth round, 
students had become comfortable enough with the iterative process that they were able to complete two full formulations within 
an hour, meaning that the average time for a single formulation had dropped to approximately 30 minutes. However, even with 
increasing familiarity, the time required to complete a formulation never decreased significantly below the 25-minute range. This 
suggests that while experience and structured LLM guidance improved formulation efficiency, there remains an inherent time 
investment required to complete each product iteration due to the physical constraints of weighing, mixing, and evaluating 
ingredients. 
 
While LLM provided quick formulation suggestions, it often produced inaccurate calculations, making its ingredient substitutions 
unreliable.10 LLM particularly fell short in making decisions about necessary amounts for synthesizing cosmetic products. This 



American Journal of Undergraduate Research www.ajuronline.org

 Volume 22 | Issue 2 | June 2025  88

limitation is illustrated in Table 4, which presents a prompt-response exchange from the development of iteration 16. The LLM 
suggests two antimicrobial substitutions—Phenoxyethanol and Optiphen—but offers no specific dosing guidance, instead 
deferring to manufacturer recommendations. This reflects a key challenge in relying on LLMs for detailed formulation decisions, 
even when prompts are well-structured. When it provided estimations and suggestions, its calculations were frequently incorrect. 
LLM was not reliable when asked to determine the percent composition or the appropriate mass to add to reach a desired mass 
percent. This limitation impacted the ingredient replacement’s ability to improve specifications. For example, when LLM 
suggested replacing xanthan gum with guar gum at a 1:1 ratio to produce iteration four, the resulting product decreased in texture 
quality compared to iteration three. Iteration four’s product was unable to produce a stable viscosity and was heterogeneous. 
Multiple rounds were necessary to ascertain if the LLM-provided substitutions were an acceptable substitution, or if its 
concentration was incorrect to get the desired change. Therefore, future use of LLMs in formulations necessitates formulators to 
double-check and validate LLM calculations to ensure the accuracy of the final product.  
 

Sample Number Brief 
Description 

Odor 
(Ideal++) 

Viscosity 
(Ideal 
+++) 

Appearance 
(Ideal +) 

Skin 
hydration 
(Ideal ++) 

After 
effect 

(Ideal+) 

Viscosity 
in Pa*s 

(% 
change) 

% change 
price per 

gram 
(Base cost 
$0.034/g) 

1) Initial LLM Formula + -- + ND ND ND 0% 
2) XG as emulsifier/ viscosity 

modifier 10% total weight +++ +++++ ++ ++ + ND -20% 
3) XG changed to 2% total 

weight +++ ++++ ++ ++ + 30.0 (3.2) -50% 
4) GG as emulsifier/viscosity 

modifier 0.1% total weight + - + + - ND -51% 
5) GG changed to 1% total 

weight + ++ + + - ND -51% 
6) GG changed to 1.2% total 

weight +++ ++++ + + ++ ND -50% 
7) Siligel as emulsifier/ 

viscosity modifier 2% total 
weight 

+ ++ + ++ + 67.4 (76) -12% 

8) XG & GG 50/50 mixture 
1.2% total weight + ++++ + + + 35.9 (19) -49% 

9) Peppermint fragrance, Shea 
Butter as Skin Conditioning 

Agent 
+++ ++ + +++ - 22.6 (17.9) -54% 

10) Siligel as 
emulsifier/viscosity modifier 

3% total weight 
+++ +++ + - ++ ND 9% 

11) Witch Hazel as humectant + ++++ + - - 39.5 (4.5) 27% 
12) Changed SLS to 

Polyglucose as emulsifying 
agent 

+++ +++ + - - 62.7 (52) 7% 

13) Peg A Dimethicone w/ 
Polyglucose - ++ + + - 57.0 (15) -1% 

14) Coco Betain w/ 
Polyglucose ND ND ND ND ND 66.0 (35) 41% 

15) Replace Siligel w/ 
Carbomer + +++++ - ND ND 30.1 (37) -57% 

16) Optiphen as preservative + +++ + ND ND 23.0 (36) -1% 
17)  Hyaluronic Acid as active ++ +++ + ++ +  40.5 (7.2) 10% 
18) Aloe added as a humectant ND -- ND ND ND ND 41% 

Table 2. Qualitative and quantitative assessment of the initial formula and 17 LLM-generated face mask formulations compared to the initial adjusted base recipe. 
Specifications include odor, appearance, skin hydration, after-effect, and viscosity, rated against ideal values (shown in parentheses). Numerical viscosity was 
measured at baseline and after two minutes; percent change reflects non-Newtonian behavior. "ND" (Not Determined) indicates a formulation failure that 
prevented testing. Price per gram is reported as a percentage change from the base cost ($0.034/g). While pH was measured for each sample using indicator paper, 
it remained within an acceptable and consistent range across all formulations and is therefore not shown here. This table integrates sensory, physical, and cost-
based metrics to evaluate LLM-driven formulation success. The visual differences for a subset of these samples are shown in Figure 2. Iteration pathways 
corresponding to these data are mapped in Figure 1. Trends across the table also reflect growing student proficiency in identifying effective substitutions and 
understanding the functional role of ingredients. 
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Adding an additional task of maintaining specifications while lowering a quantitative value (the cost) seemed to be too much for 
LLM in the hands of new formulators. LLM struggled to gather information on pricing while maintaining product quality, likely 
on account of the many variables that the LLM needed to account for in this task. Such inability is not only evident in 
performance metrics such as cost but also visibly apparent in Figure 2, where sample five demonstrates a clear phase separation 
after heat challenge testing on a sample with a suggested change. General information regarding the prices of materials provided 
by the LLM was generally reliable, but the specifics were not robust enough to provide reliable information compared to internet 
searches. Thus, LLM suggestions needed to be double-checked with internet and vendor catalog searches to verify pricing. The 
calculated cost of the iterations did fluctuate, but this fluctuation was close to the magnitude of different vendors’ price 
fluctuation of the materials used, thus nullifying any real gains from LLM proposals (see Table 2). 
 
LLM does have access to chemistry knowledge7 and can piece much of the data together to provide simple answers and enough 
feedback to easily trick a novice into thinking it does have the ability to project more complex answers to questions with more 
variables. However, as mentioned above, the answers to complex problems provided were usually incorrect. Unfortunately, 
sometimes the inaccuracies in the answers require expertise and knowledge to identify. While it is challenging to quantify the 
depth of knowledge and abilities of LLM, providing a little context in the provided prompt, such as explaining the project at hand, 
enables LLM to make more connections with its database and thus offer more suggestions on how to proceed. 
 

 Prompt Text LLM Response Text 

General 
Input 

Prompt 

“What is a good replacement for xanthan gum in a face 
mask lotion?” 

“Xanthan gum is often used in cosmetic and skincare formulations to 
provide a thickening and stabilizing effect. If you're looking for a substitute 
for xanthan gum that will give your face mask a creamy consistency, you can 
consider using Guar Gum as a replacement. Guar gum is a natural thickener 
and stabilizer commonly used in cosmetic products and can be substituted 

for xanthan gum.” 

Detailed 
Input 

Prompt 

 
“From this face mask recipe, suggest a substitute for the 
Xanthan gum in the correct scaled mass amount that will 

give a creamy consistency.  
 

Purified water: 70.65% 
EDTA: 0.15% 

Glycerin: 6.00% 
Butylene Glycol: 3.00% 

Xanthan gum: 0.6% 
Guar Gum: 0.6% 

Antimicrobial Banana mixture: 0.90% 
Sodium Lauryl Sulfate: 1.00% 

Mango Butter: 3.00% 
Olive Oil: 5.00% 

Coconut Oil: 6.00% 
Vitamin E: 0.50% 

Polyglycerol Oleate: 2.00% 
Papaya Banana: 0.10% 

Protein-Hyaluronate blend: 0.50% 
The desired yield of this recipe is 50 grams.” 

 

“To determine the correct scaled mass amount of Guar Gum as a substitute 
for the 5 grams of Xanthan Gum, you can use a similar proportion. Here's 

the calculation:  
Original Xanthan Gum: 5 g  

Guar Gum Substitute: (5 g x Mass of Guar Gum) / Mass of Xanthan Gum  
To calculate the mass of Guar Gum, you can rearrange the equation:  

Mass of Guar Gum = (5 g x Mass of Guar Gum) / 5 g  
Mass of Guar Gum = Mass of Guar Gum  

So, you can substitute 5 grams of Guar Gum for the 5 grams of Xanthan 
Gum in your recipe to achieve a creamy consistency.” 

Table 3. Comparison of LLM responses to a general vs. detailed prompt for substituting xanthan gum in a face mask formulation. The general prompt lacks 
context and receives a vague, low-utility response. In contrast, the detailed prompt includes a full ingredient list and desired yield, prompting a more targeted 
suggestion (albeit with flawed math). This example illustrates the critical role of prompt structure in obtaining relevant LLM output. For a real-world example of 
how these types of prompts played out in iterative formulation, see Table 4. 
 
The comparison in Table 3 demonstrates a clear difference in the quality of LLM responses based on prompt structure. While 
the general prompt results in a vague suggestion lacking practical application, the detailed prompt elicits a more specific—though 
still mathematically flawed—response. This reinforces the importance of carefully crafted inputs when using LLMs for 
formulation work. However, not all LLM interactions were this cleanly contrasted. In actual formulation sessions, prompts were 
often part of a longer back-and-forth as students refined their questions and evaluated ChatGPT’s responses in real time. These 
real interactions offer a more nuanced view of how LLM limitations manifest in practice, particularly when students ask for 
ingredient substitutions or specification adjustments. Table 4 presents an excerpt from one such exchange during the 
development of iteration 16. It captures a typical scenario in which the LLM suggests valid alternative ingredients but fails to 
provide the specific dosing information needed for practical implementation. This example illustrates how even well-structured 
prompts can yield incomplete answers, requiring students to apply critical thinking and follow-up strategies to move forward. 
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CONCLUSION 
This LLM proved highly effective in providing trainee formulators with quick ingredient substitution recommendations, 
particularly when selecting from an available ingredient library. It was also partially helpful in enhancing product characteristics to 
meet specifications. Based on these results, LLMs could be a valuable tool for teaching novice formulators how to adjust 
ingredients in a cosmetic formulation, especially when a detailed prompt template is used. However, determining the appropriate 
ratio for ingredient substitutions and optimizing costs would still require multiple iterations or the supervision of a trained 
formulator. It could even be suggested that an expert formulator may find LLM suggestions somewhat limited in offering truly 
novel insights. 
 

Prompt Text LLM Response Text 
The following text is the recipe for a gel-based cosmetic face 
mask: 

Purified water (base ingredient): 70.65% 
EDTA (chelating agent): 0.15% 
Glycerin (humectant): 6.00% 
Butylene Glycol (skin conditioner): 3.00% 
Siligel (thickening agent): 2.00% 
AntiMicrobial Banana mixture (antimicrobial): 
0.90% 
Polyglucose (detergent/surfactant): 1.0% 
Mango Butter (oil base): 3.00% 
Olive Oil (oil base): 5.00% 
Coconut Oil (oil base): 6.00% 
Vitamin E (antioxidant): 0.50% 
Polyglyceryl Oleate (emulsifier): 2.00% 
Papaya Banana (fragrance): 0.10% 
Protein-Hyaluronate blend (humectant): 0.50% 

The desired yield of this recipe is 50 grams. 
Suggest alterations to this recipe based on the following 
criteria: 
Change out the antiMicrobial banana with an alternative 
antiMicrobial ingredient that will not yellow following 
exposure to heat 

To replace AntiMicrobial Banana with an alternative antimicrobial ingredient that won't yellow 
after exposure to heat, you can consider using a preservative like Phenoxyethanol. 
Phenoxyethanol is a widely used preservative that is effective against bacteria and fungi and is 
less likely to cause yellowing in formulations. Here's the altered recipe with Phenoxyethanol as 
the alternative antimicrobial ingredient: 

Purified water (base ingredient): 70.65% 
EDTA (chelating agent): 0.15% 
Glycerin (humectant): 6.00% 
Butylene Glycol (skin conditioner): 3.00% 
Siligel (thickening agent): 2.00% 
Phenoxyethanol (antimicrobial): 1.00% (You can adjust the amount based on the 
manufacturer's recommendations for effective preservation.) 
Polyglucose (detergent/surfactant): 1.00% 
Mango Butter (oil base): 3.00% 
Olive Oil (oil base): 5.00% 
Coconut Oil (oil base): 6.00% 
Vitamin E (antioxidant): 0.50% 
Polyglyceryl Oleate (emulsifier): 2.00% 
Papaya Banana (fragrance): 0.10% 
Protein-Hyaluronate blend (humectant): 0.50% 

With this alteration, Phenoxyethanol will provide effective antimicrobial protection without 
causing yellowing in your formulation. Adjust the Phenoxyethanol amount based on your 
specific product's needs and the manufacturer's recommendations to ensure proper 
preservation. 

Suggest another alternative according to prompt above 

If you prefer an alternative antimicrobial ingredient to replace AntiMicrobial Banana that won't 
yellow after exposure to heat, you can consider using Optiphen or Optiphen ND. These are 
effective preservatives suitable for cosmetic formulations that offer broad-spectrum protection 
against bacteria and fungi. Here's the altered recipe with Optiphen as the alternative 
antimicrobial ingredient: 

Purified water (base ingredient): 70.65% 
EDTA (chelating agent): 0.15% 
Glycerin (humectant): 6.00% 
Butylene Glycol (skin conditioner): 3.00% 
Siligel (thickening agent): 2.00% 
Optiphen or Optiphen ND (antimicrobial): 1.00% (Adjust the amount based on the 
manufacturer's recommendations for effective preservation.) 
Polyglucose (detergent/surfactant): 1.00% 
Mango Butter (oil base): 3.00% 
Olive Oil (oil base): 5.00% 
Coconut Oil (oil base): 6.00% 
Vitamin E (antioxidant): 0.50% 
Polyglyceryl Oleate (emulsifier): 2.00% 
Papaya Banana (fragrance): 0.10% 
Protein-Hyaluronate blend (humectant): 0.50% 

Optiphen and Optiphen ND are considered alternatives that should provide effective 
antimicrobial protection without causing yellowing in your formulation. Adjust the amount 
based on your specific product's needs and the manufacturer's recommendations to ensure 
proper preservation. 

Table 4. Prompt-response exchange with the LLM during formulation of iteration 16. The initial prompt requests a non-yellowing alternative to Antimicrobial 
Banana, yielding Phenoxyethanol; a follow-up prompt results in Optiphen. While ingredient suggestions were relevant, the LLM offered no dosing guidance and 
deferred to manufacturer recommendations. This illustrates key limitations in LLM output even with well-structured prompts, emphasizing the need for user 
oversight. See Table 3 for how prompt detail influences response quality. 
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Future studies could repeat these experiments with larger consumer groups, integrating consumer feedback into iteration loops 
and using a rubric to convert qualitative specifications into quantitative data. LLMs could also be explored as a tool for 
quantifying consumer feedback, despite potential challenges in interpreting and categorizing subjective input. In such cases, LLMs 
would effectively generate the “usable” data. Although potentially highly beneficial, this approach could also introduce significant 
risks, given the history of LLMs struggling with quantifiable parameters such as mathematical calculations and cost assessments.  
 
A possible solution is to enhance LLMs with supplementary code tailored to specific recipes or laboratory settings, allowing LLM 
responses to be transformed into structured, usable data. Developing and integrating such external programs could improve the 
efficiency of LLMs in formulation workflows and expand their applicability to different areas of cosmetic development. 
Given the typical lack of formal training among novice formulators, integrating LLMs into training programs could significantly 
accelerate the learning curve by exposing students to a wide variety of ingredient substitutions. Instructors looking to implement 
these findings can incorporate structured LLM-assisted formulation exercises into laboratory coursework. By providing students 
with a standardized prompt template, educators can lower the initial barrier to using LLMs and help students generate meaningful 
formulation modifications more quickly. These structured prompts guide students through iterative changes while encouraging 
them to think critically about ingredient functionality and formulation outcomes. Over time, students begin to associate prompt 
design with experimental planning—a valuable link between digital literacy and hands-on lab skills. This approach offers a 
practical, low-cost way for instructors to enhance formulation training while introducing students to tools increasingly used in the 
industry. 
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PRESS RELEASE 
This research delves into the promising application of machine learning, specifically the ChatGPT 3.5 system, in training future 
product formulators. Through an experimental approach, the study examines the system's capability to aid students in developing 
a hydrating face mask recipe. Results indicate that while the model exhibits strong chemistry knowledge and offers useful 
suggestions for ingredient substitutions, it faces challenges with memory retention and mathematical computations. Nevertheless, 
it emerges as a valuable resource for guiding students in refining their formulations and achieving high-quality outcomes. 


