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ABSTRACT

There has been a growing number of datasets exhibiting an excess of zero values that cannot be adequately modeled using standard

probability distributions. For example, microbiome data and single-cell RNA sequencing data consist of count measurements in

which the proportion of zeros exceeds what can be captured by standard distributions such as the Poisson or negative binomial, while

also requiring appropriate modeling of the nonzero counts. Several models have been proposed to address zero-inflated datasets in-

cluding the zero-inflated negative binomial, hurdle negative binomial model, and the truncated latent Gaussian copula model. This

study aims to compare various models and determine which one performs optimally under different conditions using both simula-

tion studies and real data analyses. We are particularly interested in investigating how dependence among the variables, level of zero-

inflation or deflation, and variance of the data affects model selection.
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INTRODUCTION

Zero-inflated data refers to datasets with an excess of zeros, where the proportion of zeros cannot be adequately captured by standard

probability distributions. Such data frequently arise in various fields, such as health and epidemiology, where large numbers of zeros

are often encountered. For example, in substance abuse research, the majority of individuals do not engage in substance abuse, leading

to a predominance of zero observations. 1 Similarly, zero-inflated data are common in biomedical research including microbiome stud-

ies and single-cell RNA sequencing, where zeros occur due to limited sequencing depth.2, 3 Given the widespread occurrence of zero-

inflated data across numerous disciplines, it is essential to model these datasets accurately to ensure valid analyses. Failure to properly

account for zero inflation can lead to poor estimation and the potential oversight of statistically significant findings. Accurate mod-

eling of zero-inflated data not only improves the estimation of key parameters but also reduces bias and enhances the understanding

of dependence structures.4 Violating distributional assumptions of statistical tests is one of the “seven deadly sins” of comparative

analysis. 5 The consequences of which are biased or incorrect parameter estimates and incorrect 𝑝-values. With regard to zero-inflated

data, several studies have found that misspecifying the distribution of a general linear model (GLM) when data is zero-inflated leads

to invalid statistical inference (e.g., using a Poisson or negative binomial (NB) regression model when the data follows a zero-inflated

Poisson or zero-inflated NB distribution).6

Zero-inflated models, including zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), hurdle Poisson (HP), and hurdle

negative binomial (HNB), have been widely used to model zero-inflated data across fields such as ecology, environmental science (e.g.,

species counts), economics (e.g., consumer purchases), insurance (e.g., claims data), and criminology (e.g., crime counts in different

areas). The key difference between zero-inflated and hurdle models lies in how they handle the excess number of zeros. Zero-inflated

models combine a point mass at zero with a standard distribution that also allows non-zero probability at zero. The point mass ac-

counts for structural zeros (inherent zeros), while the non-zero probability from the standard distribution models sampling zeros

(zeros that occur by chance). In contrast, hurdle models only account for structural zeros by using a mixture of a point mass at zero
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Negative Binomial vs. Zero-Inflated Negative Binomial Distribution

Figure 1. Shown on the left is a standard negative binomial distribution (where 𝜇 = 2.5, 𝑟 = 5, and the probability that𝑌 = 0 is 0.1317) and on the right is a zero-

inflated negative binomial distribution (where 𝜇 = 2.5, 𝑟 = 5, and 𝜋𝑍 = 0.25, and the probability that𝑌 = 0 is 0.3487).

In Method and Procedures, we detail each of the zero-inflated models and define terms used in our simulation studies and real data

analyses. Then, in Simulation Setting One, we discuss the procedure, results and discussion of comparing the ZINB and HNBmod-

els. In Simulation Setting Two and Simulation Setting Three, we discuss the procedure, results, and interpretation of comparing the

HNB and TLNPNmodels (under HNB and TLNPN population data respectively). We then discuss our methods, results, and in-

terpretation of comparing the HNB and TLNPNmodels using real-world biomedical data in Real Data Analyses. Finally, we will

summarize the findings, limitations, and directions for future research in the Conclusion section.

METHOD AND PROCEDURES

In this section, we first detail the zero-inflated models that we will be investigating including the ZINB, HNB, and TLNPNmodels.

We then review important definitions for the proceeding simulation studies and real data analyses.

Models for Zero-Inflated Data

Zero-inflated models account for an excess number of zeros by adjusting the probability of observing zero of a standard probability

distribution. In particular, the form of the probability mass function (pmf) of a zero-inflated model is given by:

𝑃(𝑌 = 𝑦) =
{

𝜋𝑍 + (1 − 𝜋𝑍 )𝑝(𝑦 = 0; 𝜇) for 𝑦 = 0,

(1 − 𝜋𝑍 )𝑝(𝑦; 𝜇) if 𝑦 > 0,

where 𝑝(·) is a pmf of a discrete random variable following a standard distribution, e.g., Poisson or negative binomial distribution,
𝜇 is the mean of the distribution, and 𝜋𝑍 is the weight parameter controlling the degree of zero inflation. One of the popularly used

zero-inflated models is the zero-inflated negative binomial (ZINB) model with pmf:

𝑃(𝑌 = 𝑦) =
{

𝜋𝑍 + (1 − 𝜋𝑍 ) ( 𝑟
𝜇+𝑟 )𝑟 for 𝑦 = 0,

(1 − 𝜋𝑍 ) Γ (𝑦+𝑟 )
Γ (𝑟 )𝑦! (

𝜇
𝜇+𝑟 )𝑦 ( 𝑟

𝜇+𝑟 )𝑟 if 𝑦 > 0,

where 𝜇 is the mean of the negative binomial model, 𝑟 is the dispersion parameter, and 𝜋𝑍 is the probability of structural zeros. In

zero-inflated models, the probability of observing a zero is given by 𝜋𝑍 + (1 − 𝜋𝑍 )𝑝(𝑦 = 0; 𝜇). As a result, the probability is bounded
below by 𝑝(𝑦 = 0; 𝜇), which corresponds to the probability under the standard negative binomial model. Consequently, zero-
inflated models cannot account for zero deflation. An illustrative example of the zero-inflated negative binomial distribution is pro-

vided in Figure 1. In contrast to zero-inflated models, hurdle models are able to account for zero-inflation and zero-deflation.

Hurdle models are distinct from zero-inflated models because they only account for structural zeros and are able to model zero-deflation.

Zero-deflation occurs when there are less zero values present than a standard probability distribution would predict. The form of the
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Hurdle Negative Binomial Distributions

Figure 2. Shown are hurdle negative binomial distributions with 𝜇 = 2.5 and 𝑟 = 5. In the left histogram, 𝜋𝐻 = 0.25, so the probability𝑌 = 0 is 0.25, and in the right
histogram, 𝜋𝐻 = 0.05, so the probability that𝑌 = 0 is 0.05. Under a standard negative binomial distribution, the probability that𝑌 = 0 is 0.1317.

pmf of a hurdle model is:

𝑃(𝑌 = 𝑦) =
{

𝜋𝐻 for 𝑦 = 0

(1 − 𝜋𝐻 ) 𝑝 (𝑦;𝜇)
1−𝑝 (𝑦=0;𝜇) if 𝑦 > 0

where 𝑝(·; 𝜇) is the pmf of a Poisson or negative binomial distribution with mean 𝜇. The parameter 𝜋𝐻 is the probability that a

structural zero occurs and can take any value from 0 to 1. The hurdle negative binomial (HNB) model is given by:

𝑃(𝑌 = 𝑦) =
⎧⎪⎪⎨⎪⎪⎩

𝜋𝐻 for 𝑦 = 0
1−𝜋𝐻

1−( 𝑟
𝜇+𝑟 )𝑟

Γ (𝑦+𝑟 )
Γ(𝑟 )𝑦! (

𝜇
𝜇+𝑟 )𝑦 ( 𝑟

𝜇+𝑟 )𝑟 if 𝑦 > 0.

Under the hurdle model, zero occurs with probability 𝜋𝐻 , which can be smaller than the probability of𝑌 = 0 under the negative

binomial model and thus capable of modeling zero-deflated variables. Examples of the hurdle negative binomial distribution can be

seen in Figure 2. When data involves multiple zero-inflated variables, their associations can be modeled within the generalized linear

model framework, assuming covariates are available.

For multiple zero-inflated random variables𝑌1, . . . , 𝑌𝑝 , given the covariates 𝒙 = (𝑥1, . . . , 𝑥𝑞1 )� and 𝒛 = (𝑧1, . . . , 𝑧𝑞2 )�, which are
shared across𝑌1, . . . , 𝑌𝑝 , their associations can be modeled within the generalized linear model (GLM) framework. In particular, the

ZINB regression model is given by

ln(𝜇 𝑗 ) = 𝒙𝑇 𝜷 𝑗 , and logit(𝜋𝑍, 𝑗 ) = 𝒛𝑇𝜸 𝑗 Equation 1.

where 𝜷 𝑗 ∈ R
𝑞1 and 𝜸 𝑗 ∈ R

𝑞2 are the regression coefficients for the mean 𝝁 = (𝜇1, . . . , 𝜇𝑝)� and 𝝅𝑍 = (𝜋𝑍,1, . . . , 𝜋𝑍,𝑝)�,
respectively, and logit(𝜋𝑍 ) = ln{𝜋𝑍/(1 − 𝜋𝑍 )}. For each 𝑗 = 1, . . . , 𝑝, the parameters 𝜷 𝑗 and 𝜸 𝑗 , and the dispersion parameter 𝑟 𝑗 ,

can be estimated using the maximum likelihood estimator. Let𝑌𝑖1, . . . , 𝑌𝑖 𝑝 , 𝑖 = 1, . . . , 𝑛, be a random sample. The log-likelihood

function of the 𝑗th variable, 𝐿𝑍𝐼, 𝑗 is defined as 𝐿𝑍𝐼, 𝑗 = 𝐿1, 𝑗 + 𝐿2, 𝑗 + 𝐿3, 𝑗 − 𝐿4, 𝑗 , where

𝐿1, 𝑗 =
∑
𝑖:𝑦𝑖=0

ln

{
𝑒𝒛𝒊

𝑇𝜸 𝑗 +
(
1 + 𝜇𝑖 𝑗

𝑟 𝑗

)−𝑟 𝑗 }
, 𝐿2, 𝑗 =

∑
𝑖:𝑦𝑖 𝑗>0

𝑦𝑖 𝑗−1∑
𝑡=0

ln(𝑡 + 𝑟 𝑗 )

𝐿3, 𝑗 =
∑
𝑖:𝑦𝑖>0

{ − ln(𝑦𝑖 𝑗 !) − (𝑦𝑖 𝑗 + 𝑟 𝑗 ) ln
(
1 + 𝜇𝑖 𝑗

𝑟 𝑗

)
+ 𝑦𝑖 𝑗 ln(𝑟−1

𝑗 ) + 𝑦𝑖 𝑗 ln(𝜇𝑖 𝑗 )
}

𝐿4, 𝑗 =
𝑛∑
𝑖=1

ln(1 + 𝑒𝒛𝒊
𝑇𝜸 𝑗 ).
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Thus, the log-likelihood function of the joint model is given by 𝐿𝑍𝐼 =
∑

𝑗 𝐿𝑍𝐼, 𝑗 . The hurdle negative binomial regression model is

given by

ln(𝜇𝑖 𝑗 ) = 𝒙𝑇𝑖 𝜷 𝑗 , and logit(𝜋𝐻,𝑖 𝑗 ) = 𝒙𝑇𝑖 𝜸 𝑗 Equation 2.

The log-likelihood function of the 𝑗th variable, 𝐿H,j, is given as

𝐿𝐻, 𝑗 =
𝑛∑
𝑖=1

(𝐼𝑦𝑖 𝑗=0 ln(𝜋𝐻,𝑖 𝑗 ) + 𝐼𝑦𝑖>0 (ln(1 − 𝜋𝐻,𝑖 𝑗 ) + ln(ℎ(𝑦𝑖 𝑗 ; 𝜇𝑖 𝑗 , 𝑟 𝑗 ) − ln(1 − (1 + 𝑟 𝑗𝜇𝑖 𝑗 )−𝑟 𝑗 ))

where ℎ(𝑦𝑖 𝑗 ; 𝜇𝑖 𝑗 , 𝑟 𝑗 ) denotes the pmf of the negative binomial distribution with mean 𝜇𝑖 𝑗 and dispersion parameter 𝑟 𝑗 .
12 Therefore,

the log-likelihood function of the joint hurdle model is given by 𝐿𝐻 =
∑

𝑗 𝐿𝐻, 𝑗 .

Nevertheless, in real-world applications, such covariates are often not readily available. In these cases, we can only fit the intercept

parameters 𝛽0 and 𝛾0, assuming that all variables are mutually independent. The Gaussian copula model addresses this limitation by

utilizing a rank-based correlation estimator. The Gaussian copula model assumes that, for a random vector 𝒚 = (𝑌1, ..., 𝑌𝑝)�, there
exist strictly increasing functions, 𝑔1, . . . , 𝑔𝑝 , such that 𝒛 = (𝑔1 (𝑌1), ..., 𝑔𝑝 (𝑌𝑝))� ∼ 𝑁𝑝 (𝝁,𝚺) for some mean 𝝁 and covariance

matrix 𝚺. It is important to note that 𝝁 and 𝚺 are not identifiable because, for any constants 𝑎 𝑗 and 𝑏 𝑗 , the Gaussian copula model

still holds with 𝑔∗
𝑗 = 𝑎 𝑗 + 𝑏 𝑗𝑔 𝑗 , 𝑗 = 1, . . . , 𝑝, i.e., (𝑔∗

1 (𝑌1), ..., 𝑔∗
𝑝 (𝑌𝑝))� follows 𝑁𝑝 (𝒂 + 𝝁, 𝑩𝚺𝑩), where 𝒂 = (𝑎1, . . . , 𝑎𝑝)� and

𝑩 = diag{𝑏 𝑗 }𝑝𝑗=1. The identifiability issue is commonly addressed by assuming that 𝝁 = 0𝑝 and 𝚺 is a positive definite correlation
matrix. 11, 13 If 𝑔 𝑗 s are differentiable, then we have an analytic expression as 𝑔 𝑗 = Φ−1 ◦ 𝐹𝑗 , where 𝐹𝑗 andΦ−1 are the distribution
functions of𝑌 𝑗 and standard Gaussian. The Gaussian copula models are often denoted as 𝒚 ∼ 𝑁𝑃𝑁 (0𝑝 ,𝚺, 𝒈). 14

The Gaussian copula models assume that𝑌 𝑗 are continuous and are thus not valid for zero-inflated variables. To accommodate zero-

inflated and highly skewed variables, the truncated Gaussian copula models 10 have been introduced by incorporating an additional

truncation mechanism, as follows:

Definition 1 (Truncated Latent Gaussian Copula Model). A random vector 𝒚 ∈ R
𝑝 satisfies the truncated latent Gaussian Copula

model if there exists a random vector 𝒚∗ ∼ 𝑁𝑃𝑁 (0𝑝 ,𝚺, 𝒈) and constants 𝐷 𝑗 , 𝑗 = 1, ..., 𝑝 such that𝑌 𝑗 = 𝐼 (𝑌 ∗
𝑗 > 𝐷 𝑗 )𝑌 ∗

𝑗 where 𝐼 (·) is
an indicator function. We then denote 𝒚 ∼ 𝑇 𝐿𝑁𝑃𝑁 (0,𝚺, 𝒈, 𝑫).

The latent correlation matrix 𝚺 of𝑇 𝐿𝑁𝑃𝑁 (0,𝚺, 𝒈, 𝑫) is estimated using Kendall’s 𝜏. The sample Kendall’s 𝜏 between the 𝑗th and

𝑘th variables is defined as:

�̂�𝑗𝑘 =
2

𝑛(𝑛 − 1)
∑

1≤𝑖≤𝑖′≤𝑛
sign(𝑌𝑖 𝑗 − 𝑌𝑖′ 𝑗 )sign(𝑌𝑖𝑘 − 𝑌𝑖′𝑘).

There exists 10, 11 an increasing bridge function𝐺 defined so𝐺 (Σ 𝑗𝑘) = 𝐸 (�̂�𝑗𝑘) = 𝜏𝑗𝑘 where Σ 𝑗𝑘 is an element of 𝚺 corresponding to
variables𝑌 𝑗 and𝑌𝑘 . The bridge function𝐺 for two truncated variables is defined as:

𝐺𝑇𝑇 (Σ 𝑗𝑘 ;Δ 𝑗 ,Δ𝑘) = −2Φ4 (−Δ 𝑗 , −Δ𝑘 , 0, 0;𝚺4𝑎) + 2Φ4 (−Δ 𝑗 , −Δ𝑘 , 0, 0;𝚺4𝑏),

where Δ 𝑗 = 𝑓 𝑗 (𝐷 𝑗 ) andΦ4 (𝑎1, 𝑎2, 𝑎3, 𝑎4;𝚺4) denotes the CDF of 4-dimensional Gaussian with zero mean and correlation matrix
𝚺4 evaluated at 𝒂 = (𝑎1, 𝑎2, 𝑎3, 𝑎4)�. The correlation matrices 𝚺4𝑎 and 𝚺4𝑏 are given by

𝚺4𝑎 =

������
1 0 1/√2 Σ 𝑗𝑘/

√
2

0 1 Σ 𝑗𝑘/
√
2 1/√2

1/√2 Σ 𝑗𝑘/
√
2 1 −Σ 𝑗𝑘

−Σ 𝑗𝑘/
√
2 1/√2 −Σ 𝑗𝑘 1

������
,

𝚺4𝑏 =

������
1 Σ 𝑗𝑘 1/√2 Σ 𝑗𝑘/

√
2

Σ 𝑗𝑘 1 Σ 𝑗𝑘/
√
2 1/√2

Σ 𝑗𝑘/
√
2 1/√2 1 Σ 𝑗𝑘

1/√2 Σ 𝑗𝑘/
√
2 Σ 𝑗𝑘 1

������
.
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Using the bridge function𝐺, we can consistently 10, 11 estimate the latent correlation matrix as Σ̂ 𝑗𝑘 = 𝐺−1 (�̂�𝑗𝑘 ; Δ̂ 𝑗 , Δ̂𝑘), where Δ̂ 𝑗 is

the moment estimator as Δ̂ 𝑗 = Φ(�̂� 𝑗 ) and �̂� 𝑗 = 𝑛−1∑𝑛
𝑖=1 1(𝑌𝑖 𝑗 = 0) is the sample proportion of zeros of the 𝑗th variable. Below,

we see how the observed variable𝑌 𝑗 is modeled as a latent standard Gaussian variable, 𝑍 𝑗 , truncated by Δ 𝑗 , whereΦ(Δ 𝑗 ) = 𝜋 𝑗 is the

probability of the 𝑗th variable taking zero, which is estimated by the sample proportion of zeros,

𝑌 𝑗 = 𝐼 (𝑌 ∗
𝑗 > 𝐷 𝑗 )𝑌 ∗

𝑗 = 𝐼{𝑔(𝑌 ∗
𝑗 ) > 𝑔(𝐷 𝑗 )}𝑌 ∗

𝑗 = 𝐼{𝑍 𝑗 > Δ 𝑗 }𝑌 ∗
𝑗 = 𝐼{Φ(𝑍 𝑗 ) > Φ(Δ 𝑗 )}𝑌 ∗

𝑗 = 𝐼{Φ(𝑍 𝑗 ) > 𝜋 𝑗 }𝑌 ∗
𝑗 .

The latent Gaussian copula model for binary type data was first introduced in 2017 to model dependence among discrete Arabidopsis

gene data. 11 The TLNPNmodel was introduced in 2020 along with the rank-based estimators for the latent correlation matrix, and it

was found useful for modeling gene-expression and micro-RNA data. 10 The TLNPNmodel has shown to be useful when perform-

ing discriminant analysis for microbiome data due to its ability to model dependence among zero-inflated variables. 14 At the same

time, zero-inflated and hurdle models are also popularly used to model zero-inflated data. However, a lack of research has been done

comparing the TLNPNmodel to the other zero-inflated models and investigating the characteristics of data in which the TLNPN

model performs better than the other models.

Definitions for Simulation Studies and Real Data Analyses

We examine the performance and robustness of ZINB, HNB, and TLNPNmodels using synthetic datasets across various conditions.

We simulate data from each of the three populations—ZINB, HNB, and TLNPN—and, in settings two and three, evaluate perfor-

mance by calculating the Wasserstein distance between test data independently generated from an assumed population model and

data generated from the corresponding fitted model. TheWasserstein distance measures the distance between two probability distri-

butions and is used for goodness-of-fit and statistical inference between two probability distributions where a lower distance implies

a better fit. 15 Let 𝜇 and 𝜈 denote the probability measures corresponding to the distributions of the random vectors 𝒙 and 𝒚, respec-

tively. Also, let 𝛾 be a coupling, which is a probability measure defined on the product space of the probability spaces of 𝒙 and 𝒚, with

marginals 𝜇 and 𝜈. At the population level, the Wasserstein distance is defined as

𝑊𝑝 (𝜇, 𝜈) = inf
𝛾∈Γ (𝜇,𝜈)

{
E(𝒙,𝒚 )∼𝛾𝑑 (𝒙, 𝒚) 𝑝}1/𝑝 ,

where Γ(𝜇, 𝜈) is the set of all couplings. At the sample level, the Wasserstein distance between multivariate dataset𝒀 and �̂� is defined
as

𝑊𝑝 (𝒀 , �̂�) = inf
𝜃∈S𝑛

(
1

𝑛

𝑛∑
𝑖=1

‖𝒚𝑖 − �̂�𝜃 (𝑖) ‖ 𝑝
) 1/𝑝

,

where 𝜃 is a permutation in the symmetric group S𝑛, the set of all 𝑛-permutations. Since S𝑛 contains 𝑛! permutations, we approxi-

mate the computation of Wasserstein distances in our numerical study using the network simplex algorithm, 16 implemented in the R

package transport. As a summary measure of our results, we use arithmetic mean change (AMC). We use AMC because we want
to measure the real relative difference between the performance of the models under varying scales of data. Furthermore, AMC is a

symmetric measure of relative change, so a 10% improvement and 10% decline in performance from the HNBmodel to the TLNPN

model are both captured by AMC, for example. Let𝜔HNB = 𝑊𝑝 (𝑌, �̂�HNB) and𝜔TLNPN = 𝑊𝑝 (𝑌, �̂�TLNPN) where �̂�TLNPN is a

simulated multivariate dataset generated from the TLNPNmodel, �̂�HNB is a simulated multivariate dataset generated from the HNB

model, and𝑌 is a multivariate dataset generated from the true model. The AMC of theWasserstein distance generated between the

HNBmodel and the true model to the Wasserstein distance generated between the TLNPNmodel and the true model is given by:

AMC =
𝜔TLNPN − 𝜔HNB

(𝜔TLNPN + 𝜔HNB)/2
. Equation 3.

Therefore, a positive AMC implies that the HNBmodel performs better, a negative AMC implies the TLNPNmodel performs bet-

ter, and AMC=0 implies that the models perform the same.

We explore performance of ZINB, HNB, and TLNPN under three simulation settings. In setting one, we aim to validate previous

findings on the robustness of univariate ZINB and HNBmodels to model misspecification, focusing specifically on varying levels of
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zero inflation or deflation and differing proportions of sampling and structural zeros. In this simulation setting, we compare model

performance using Akaike Information Criterion (AIC) since they are both discrete distributions and we seek to replicate previous

studies. 1 AIC is a measure of model fit based on the likelihood function, with a penalty term that increases linearly with the number

of model parameters 𝑘 . It is defined as

AIC = 2𝑘 − 2 ln 𝐿,

where 𝐿 is the likelihood function. Smaller AIC values suggest a more favorable model fit. It is a standard measure to compare two

models; however, when comparing discrete and continuous models, it is biased towards the continuous model since likelihood val-

ues in continuous models are usually higher than probabilities in discrete models. Accordingly, we use AIC to compare the HNB and

ZINBmodels but use Wasserstein distance to compare the HNB and TLNPNmodels. In simulation setting two, we compare the

HNBmodel to the TLNPNmodel under HNB population data. We seek to evaluate whether the proportion of zeros or the depen-

dence among the variables has an impact on the relative performance of each model. In simulation setting three, we again compare the

HNB and TLNPNmodels except with TLNPN population data. We again seek to understand how zero-proportion and dependence

among variables affects relative model performance.

In the multivariate settings (settings two and three), we apply the following autoregressive (AR) and geometrically decaying eigenval-

ues (GD) correlation structures to induce dependence between zero-inflated variables. The AR correlation structure is given by:

𝚺 = [𝜌 | 𝑗− 𝑗′ | ]1≤ 𝑗 , 𝑗′≤𝑝 . Equation 4.

The covariance matrix of the GD structure is given by 𝚺 = 𝚪𝑵𝚪𝑇 where 𝑵 = diag{𝜈 𝑗 }𝑝𝑗=1 is a diagonal matrix with geometrically
decaying eigenvalues defined by:

𝜈 𝑗 =
5(𝜌 𝑗−1 − 𝜌 𝑗 )
1 − 𝜌𝑝

, 𝑗 = 1, ..., 𝑝, Equation 5.

where a lower value of 𝜌 leads to higher correlations (in the absolute value sense) between the covariates, and 𝚪 is uniformly generated
from the orthogonal group 17 of order 𝑝,OG𝑝 , whereOG𝑝 = {𝑶 | 𝑶𝑇𝑶 = 𝑰,𝑶 ∈ R𝑝×𝑝} is the set of all 𝑝 × 𝑝 orthogonal matrices.

The simulation settings are detailed as follows.

SETTING ONE: COMPARING THE UNIVARIATE ZINB AND HNBMODELS

In this setting, we seek to replicate previous findings comparing the univariate ZINB and HNBmodels under model misspecification

and varying zero proportion. 1We simulated 𝑛 = 500 data points using covariate 𝑋𝑖 where 𝑋𝑖 ∼ 𝑁 (0, 1), 𝑖 = 1, . . . , 500, ln(𝜇𝑖) =
𝛽0 + 𝛽1𝑥𝑖 , logit(𝜋𝑍,𝑖) = 𝛾0 + 𝛾1𝑥𝑖 and logit(𝜋𝐻,𝑖) = 𝛾0 + 𝛾1𝑥𝑖 as in Equation 1 and Equation 2. We performed simulations

under three parameter conditions controlling for 𝛽0 = ln(12), 𝛽1 = 2, 𝛾1 = 2, and 𝑟 = 0.5 at 20% zero-proportion, 40% zero-

proportion, and 60% zero-proportion, which we adjusted using the 𝛾0 parameter under both the ZINBmodel and HNBmodel. We

fix 𝛽1 = 𝛾1 = 2 to replicate previous findings 1 and fix 𝛽0 = ln(12) and 𝑟 = 0.5 to ensure there is a significant difference in the

proportion of structural and sampling zeros under the HNB and ZINBmodels. We then fit each model to the simulated data and

compare the model fit through AIC.

To further investigate the impact that zero-deflation had on relative model performance, we conducted a follow-up simulation study.

We simulated 𝑛 = 700 data points using covariate 𝑋𝑖 ∼ 𝑁 (0, 1), 𝑖 = 1, . . . , 700, ln(𝜇𝑖) = 𝛽0+ 𝛽1𝑥𝑖 , and logit(𝜋𝐻,𝑖) = 𝛾0+𝛾1𝑥𝑖 where

𝛽0 = ln(6/7), 𝛽1 = 0.1, 𝛾1 = 0, and 𝑟 = 2 in Equation 2. We varied 𝜋𝐻,𝑖 from 0.08 to 0.7 by adjusting the 𝛾0 parameter. In this case,

under the standard negative binomial distribution with 𝜇 = ln(6/7) and 𝑟 = 2, the probability of𝑌 = 0 is 0.5. We fixed 𝛽0 = ln(6/7)
and 𝑟 = 2 in order to make the probability of𝑌 = 0 under the standard negative binomial distribution equal to 0.5, so there was a

large range of zero-proportions that would be considered zero-deflation. Furthermore, we fixed 𝛽1 = 0.1 and 𝛾1 = 0 because we were
mainly interested in the effect of zero-deflation, so we did not want the covariate to have a large impact on the mean or probability

of a structural zero. For each iteration, corresponding to a different proportion of zeros, we fit the data using both HNB and ZINB

models and compared their AIC values.

We confirmed previous findings and found that when the proportion of sampling and structural zeros differed significantly and 𝛽1
and 𝛾1 had high values, then the models were sensitive to model misspecification

1 as seen in Figure 3. We see that under each propor-
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Figure 3. The box plots show how the AIC of the ZINB and HNBmodels compare with one another under varying conditions. On the top row, the population data

was generated from the ZINBmodel, and on the bottom row, the population data was generated from the HNBmodel. In this case, 𝛽1 = 𝛾1 = 2. Each column of box

plots corresponds to a different proportion of zeros: 20%, 40%, and 60%. We see in the top row that the ZINBmodel outperforms the HNBmodel with the exception

of the setting with 20% zero-proportion, and on the bottom row, the HNBmodel outperforms the ZINBmodel. We see this result because given a 𝑥𝑖 with a large

negative magnitude, the ZINBmodel will predict a sampling zero where the HNBmodel would not. For example, given 𝑥𝑖 = −5, 𝜋𝑍 + (1 − 𝜋𝑍 ) ( 𝑟
𝜇𝑖+𝑟 )𝑟 ≈ 1 in

Equation 1; however, 𝜋𝐻 ≈ 0 in Equation 2.

tion of zeros (20%, 40%, and 60%), when 𝛽1 = 𝛾1 = 2, the true model far outperformed the other in terms of AIC (with the exception
of when the population data was generated by the ZINBmodel and the zero-proportion was 20%). In a second simulation study com-

paring the HNB and ZINBmodels, our results show that under conditions of zero deflation—where the probability of𝑌 = 0 is

less than 0.5—the HNBmodel significantly outperforms the ZINBmodel in AIC. The difference in AIC values grows exponentially

as the proportion of zeros falls below the probability of𝑌 = 0 under the standard negative binomial distribution, as illustrated in

Figure 4. However, it seems that the ZINBmodel is able to account for moderate zero-deflation without an impact on model perfor-

mance.

In this setting, we found that when 𝛽1 = 𝛾1 = 2, the ZINB and HNBwere vulnerable to model misspecification as seen in Figure 3.
We conclude that this trend is due to the fact that the ZINBmodel will predict a sampling zero given 𝑥𝑖 with a large, negative magni-

tude whereas the HNBmodel would never predict a sampling zero, causing the difference in AIC. Furthermore, we also observed that

in cases of zero-deflation, the HNBmodel far outperformed the ZINBmodel, which is displayed in Figure 4. However, the ZINB

model seemed robust to moderate levels of zero-deflation. This robustness of the ZINBmodel to moderate zero deflation arises from

its ability to adjust parameters such as the dispersion parameter, compensating for a lower-than-expected proportion of zeros. How-

ever, as the zero-deflation intensifies, the difference in AIC begins to grow since the ZINBmodel cannot predict zeros at a probability

below that of a standard negative binomial distribution.

SETTING TWO: COMPARING THE HNB AND TLNPNMODELS (WITH HNB POPULATION DATA)

This setting aims to empirically compare the goodness-of-fit of the HNB and TLNPNmodels when the population data are gener-

ated from the HNBmodel. We seek to investigate how different parameters of the HNB population model affect the relative perfor-

mance of the TLNPNmodel to discover both its strengths and weaknesses. We do not consider the ZINBmodel because it cannot

model zero-deflation, which is one of the conditions that we investigate. We also consider the HNBmodel fitted with and without

covariates; however, in most biomedical datasets, covariates are unavailable. We set 𝑛 = 1200 and 𝑝 = 5 and generate covariates 𝒙𝑖 ,
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Figure 4. In cases of extreme zero-deflation, the HNB far outperformed the ZINBmodel. We simulated HNB population data under varying levels of zero-deflation

and inflation and fitted both the HNB and ZINBmodel. We found the difference in AIC between the two models corresponding to each proportion of zeros. The

y-axis displays the ZINBmodel AICminus the HNBmodel AIC. Under the standard negative binomial model with 𝜇 = ln(6/7) and 𝑟 = 2, the probability that

𝑌 = 0 is 0.5 (the red line). We see that as the proportion of zeros declines below 0.5, the difference in AIC grows at an increasing rate.

𝑖 = 1, . . . , 𝑛, independently and identically from the multivariate Gaussian with zero mean and covariance matrix given in Equation

4 and Equation 5. We then set ln(𝜇𝑖 𝑗 ) = 𝛽0 + 𝛽1𝑥𝑖 𝑗 and logit(𝜋𝐻𝑖 𝑗 ) = 𝛾0 + 𝛾1𝑥𝑖 𝑗 , 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑝 as in Equation 2.

We set 𝛽0 = 2.75 and 𝑟 = 6 for all the simulations, which allows us to evaluate the impact of zero-inflation and zero-deflation. The pa-
rameter 𝛽1 controls the impact that the covariate has on 𝜇𝑖 𝑗 and thus, affects the scale and dependence among the variables. It was set

at 0, 1, and 2 in order to evaluate the impact of 𝑥𝑖 𝑗 having no effect on 𝜇𝑖 𝑗 to 𝑥𝑖 𝑗 having a large effect on 𝜇𝑖 𝑗 . The parameter 𝛾0 con-

trols the zero-proportion of the variable and was set at ln(1/20), ln(1/9), and ln(1/3) since we are interested in whether zero-inflation
or zero-deflation impacts relative model performance. We also varied the parameter 𝛾1, which controls how the covariate affects the

probability of a structural zero, which impacts the variance of the data. This parameter was set at −0.8, 0.8, and 0. These values were

chosen to evaluate the effect of 𝑥𝑖 𝑗 having a negative, positive, and no relationship with 𝑃(𝑌𝑖 𝑗 = 0), respectively. Finally, we also in-
vestigated the impact of the parameter 𝜌, which controls the amount of correlation between the covariates under both the AR and

GD correlation structures, and thus, it affects the dependence among the HNB variables. The parameter 𝜌 was set at 0.01, 0.3, 0.7,

and 0.9. We wanted to repeat this simulation study with a GD correlation structure because it can create negative correlation between

covariates, unlike the AR correlation structure, and it more closely resembles correlation matrices found in real life.

Figure 5. These heatmaps compare the performance of the HNBmodel to the TLNPNmodel through our summary measure arithmetic mean change (AMC) given

in Equation 3. Positive AMC, represented by warm colors, indicates the HNBmodel performing better, and negative AMC, represented by cool colors, indicates the

TLNPNmodel performing better. When the HNBmodel is fitted without covariates, we see that as 𝜌 and 𝛽1 increase, the TLNPNmodel outperforms the HNB

model. However, when the HNBmodel is fitted with covariates, the HNBmodel outperforms the TLNPNmodel most as 𝜌 and 𝛽1 increase.
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As a goodness-of-fit measure, we consider 5-fold cross-validated prediction error. In particular, we randomly split 𝑛 = 1200 obser-

vations into five equal-sized folds, using four of the folds for training and keeping the remaining one for testing. The HNB and TL-

NPNmodels are fitted to the training data, and from each fitted model, we simulate a dataset of 240 observations for prediction and

obtain the Wasserstein distance between the simulated data from the fitted model and the test data. The described process is repeated

for each fold, and we average the resulting fiveWasserstein distances to obtain the cross-validated prediction error, which will be used

as our performance measure. We repeat this procedure for 30 replicated datasets and summarize the results in Figure 5 through Fig-

ure 12.

Figure 6. When 𝛽1 = 0, the HNBmodel and TLNPNmodel perform the same. We see this result because when 𝛽1 = 0, then the HNB variables are practically

independent (the 𝛾1 parameter could still incur a minor amount of dependence between the variables). Therefore, the TLNPNmodel does not have an advantage in

fitting the multivariate distribution as there is very little dependence among the variables for it to model.

We first investigate the interaction between 𝛽1 and 𝜌 and its impact on relative model performance. When we account for whether

covariates were included in the fitting of the HNBmodel, we find starkly different results as shown in Figure 5. We see that when co-

variates aren’t considered in the fitting of the HNBmodel, we see results consistent with our predictions that a high 𝜌 and high 𝛽1
parameter would improve the relative performance of the TLNPNmodel. We also see that when 𝛽1 = 0 or 𝜌 = 0.01, the models per-

form nearly the same. However, when covariates are considered in fitting the HNBmodel, we see notably different results. Still, the

TLNPN and HNBmodels perform nearly the same when 𝛽1 = 0 with the AMC of theWasserstein distances being approximately 0
regardless of 𝜌. However, as 𝛽1 increases, the relative performance of the TLNPNmodel against the HNBmodel worsens. Further-

more, it seems that as 𝜌 increases, the TLNPNmodel performs worse against the HNBmodel fitted with covariates. We conducted a

follow-up simulation study to investigate this trend.

Figure 7. The heatmaps show the relative performance of the TLNPNmodel to the HNBmodel under different values of 𝜌 and 𝛾1. We see that when covariates are

not considered when fitting the HNBmodel, then the TLNPNmodel performs best relative to the HNBmodel when 𝛾1 = −0.8 and 𝜌 = 0.9 (left). When 𝛾1 = −0.8,
as the covariate, 𝑥𝑖 𝑗 , increases, the mean of the model increases while the probability of a structural zero decreases. Since the covariates for each variable are correlated,

this results in stronger correlation among the zero-inflated variables. However, when 𝛾1 = 0.8 an observation is more likely to contain a variable with a high value and

one that is equal to 0, reducing the dependence among the variables leading to an increase in the AMC.We also see that when covariates are considered in fitting the

HNBmodel, then the TLNPNmodel performs worse relative to the HNBmodel as 𝛾1 decreases and generally as 𝜌 increases (right).

The follow-up simulation study followed the same process as the first except we also measured the marginal Wasserstein distance be-

tween the test data and the simulated data and the correlation matrix of the test data and the correlation matrix of the simulated data.

In this study, we considered the HNBmodel fitted with covariates. We found that as 𝛽1 increases from 1 to 2 (when 𝜌 = 0.9), the



American Journal of Undergraduate Research www.ajuronline.org

 Volume 22 | Issue 2 | June 2025  58

TLNPNmodel will further underestimate the correlation between the zero-inflated variables as shown in Figure 8. We also found

that the one-dimensional Wasserstein distances of the marginal TLNPN data to the marginal test data were greater than that of those

generated by HNB data as displayed in Figure 9.

Figure 8. In these box plots, the y-axis measures the mean difference between the values of the correlation matrices between the data produced by the model and

the test data. In this figure, the HNBmodel was fitted with covariates. These box plots show that as 𝛽1 increases, the TLNPNmodel increasingly underestimates

correlation between variables. We suspect this occurs because the latent Gaussian variables in the TLNPNmodel must fit a latent correlation matrix such that the joint

distribution will have data points with variables equal to large positive values and variables equal to 0 on account of the zero-inflation.

We found that the zero-proportion of the variables, controlled by 𝛾0, did not have an impact on relative model performance between

the HNB and TLNPNmodels. Furthermore, we also investigated the interaction between 𝜌 and 𝛾1 with regard to the relative model

fit between the TLNPN and HNBmodels when controlling for 𝛽1. We see in Figure 6 and Figure 23 that regardless of whether co-

variates are included in the HNBmodel fitting, when 𝛽1 = 0, 𝛾1 has no impact on the relative performance of the TLNPNmodel.

When 𝛽1 = 2, we see a trend in Figure 7. When covariates are not considered, the TLNPNmodel performs best when 𝛾1 = −0.8

and 𝜌 = 0.9. Additionally, as 𝜌 increases, the performance of the TLNPNmodel against the HNBmodel improves. When covariates

are considered, the trend is reversed where the TLNPN performs worse when 𝛾1 = −0.8 and 𝜌 is high. We conducted a follow-up

simulation study to investigate this trend.

From our previous follow-up simulation study, we see that as 𝛾1 increases, the one-dimensional Wasserstein distance between the TL-

NPN data and the test data decreases as seen in Figure 9. To explain the differences in the one-dimensional Wasserstein distances,

we conducted another follow-up simulation study in which we compared the distributions of the test data to the HNB and TLNPN

simulated data when 𝛾1 = −2 and when 𝛾1 = 2, and the results are displayed in Figure 10. We see that when 𝛾1 = −2, we find much
higher residuals between the TLNPN and test data; however, when 𝛾1 = 2, these residuals decrease dramatically.

The results of this simulation study presented thus far have been generated from covariates following an AR correlation structure; we

found similar results from covariates generated from the GD correlation structure. Again, note that in a GD correlation structure, as

𝜌 decreases, the correlation (in an absolute sense) between the covariates tends to increase.

We see in Figure 11, that again, there is an interaction between 𝜌 and 𝛽1 such that when 𝜌 is small and 𝛽1 is large, the TLNPNmodel

outperforms the HNBmodel fitted without covariates. We again see similar results when the HNBmodel is fitted with covariates

where the HNBmodel outperforms the TLNPNmodel most when 𝛽1 = 2 and 𝜌 = 0.01. For both scenarios, we see that when

𝛽1 = 0, the models perform nearly identically.

As with the AR correlation structure, we again see in Figure 12 an interaction between 𝛽1 and 𝛾1 where the effect of 𝛾1 only becomes

clear when 𝛽1 ≠ 0 since the models perform nearly identically when 𝛽1 = 0 regardless of 𝜌 or 𝛾1. When 𝛽1 = 2, we begin to see a

familiar pattern. When covariates are not considered when fitting the HNBmodel, the TLNPNmodel outperforms the HNBmodel
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Figure 9. These box plots show the impact that 𝛾1 has on the marginal performance of the TLNPNmodel. The y-axis displays the one-dimensional Wasserstein

distance between the first variable of the test data and the first variable of the simulated data. We see that as 𝛾1 increases, the Wasserstein distance between the TLNPN

data and test data decreases. This trend is a result of higher, more extreme values become less probable as 𝛾1 increases, which the TLNPNmodel struggles to predict

since the variance of the HNBmodel increases as 𝜇𝑖 𝑗 increases. The HNBmodel was fitted with covariates, and we see that the marginal Wasserstein distance between

the HNB simulated data and the test data stays approximately the same as 𝛾1 increases.

most when 𝜌 = 0.01 and 𝛾1 = −0.8 where as 𝜌 and 𝛾1 decrease, the better the TLNPNmodel performs relative to the HNBmodel.

However, when covariates are considered when fitting the HNBmodel, the relative performance of the TLNPNmodel declines as 𝜌

and 𝛾1 decrease.

Figure 10. These histograms display how 𝛾1 affects the marginal performance of the HNB and TLNPNmodels in the first and second column respectively. The first

row shows the difference between the sorted values of the simulated and test data when 𝛾1 = −2, and the second row shows the case when 𝛾1 = 2. As 𝛾1 increases,

the graphs show the residuals decreasing, particularly for the TLNPN data, which occurs because when 𝛾1 increases, given 𝛽1 > 0, extreme values become less likely

because as the covariate increases, both 𝜇𝑖 𝑗 and 𝜋𝐻,𝑖 𝑗 increase.

The first main result of our second simulation setting is displayed in Figure 5where we see that when the HNBmodel is fitted with-

out covariates, the TLNPNmodel performs best when 𝛽1 = 2 and 𝜌 = 0.9 under the AR correlation structure. We attribute this

to the ability of the TLNPNmodel to account for the correlation between the latent Gaussian variables, which can be influenced

through the correlation between the covariates. However, for the correlation between the covariates to have an impact on the latent

correlation, the 𝛽1 parameter, which controls the impact the covariates have on the mean, has to be nonzero. We see that regardless of
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𝜌, when 𝛽1 = 0, the models perform nearly identically because the impact of the correlation between the covariates has no bearing on
the correlation of the latent variable since the covariates have no effect on the mean. Similarly, when 𝛽1 = 2 and 𝜌 = 0.01, we see that

the models perform nearly the same, because there is a lack of dependence among the covariates and thus, the variables. Therefore,

under the AR correlation structure, when both 𝜌 and 𝛽1 are large, we see the best relative performance of the TLNPNmodel because

the variables are more highly dependent on each other since the covariates are highly correlated and the covariates have a large impact

on 𝜇.

In Figure 5, we also observe that when the HNBmodel is fitted with covariates, it outperforms the TLNPNmodel most when both

𝛽1 and 𝜌 are high. We conducted a follow-up simulation study to investigate this trend; the results of which are summarized in Fig-

ure 8 and Figure 9. We see in these figures that the TLNPNmodel underestimates the correlation among the HNB variables and

performs worse than the HNBmodel fitted with covariates on the marginal level. We attribute this trend to the TLNPNmodel esti-

mating the latent correlation between the latent Gaussian variables through a formula that utilizes Kendall’s 𝜏. In contrast, the HNB

model was able to much more accurately capture the correlation between the variables. We attribute this to the HNBmodel using

the covariates of the test data when simulating data from the fitted model, resulting in more accurate predictions than those of the

TLNPNmodel, particularly for extremely high values. The TLNPNmodel can only predict values within its training dataset, which

makes it vulnerable to modeling datasets with extreme, outlier values, which are much more probable when 𝛽1 = 2 as compared to 1

or 0.

Figure 11. We see in the first heat map that the TLNPNmodel outperforms the HNBmodel (fitted without covariates) most when 𝜌 = 0.01 and 𝛽1 = 2. This occurs

because under the GD correlation structure, when 𝛽1 = 2 and 𝜌 = 0.01, there is a stronger dependence among the zero-inflated variables. In the second heat map, the

HNBmodel is fitted with covariates. We see that the TLNPNmodel performs worst relative to the HNBmodel when 𝛽1 = 2 and 𝜌 = 0.01 since the TLNPNmodel

underestimates the correlation among the variables and performs worse at modeling the marginal distributions.

In Figure 6, we see that when 𝛽1 = 0, the 𝛾1 parameter seems to have no effect on relative model performance. This is a result of the

lack of dependence and extreme values among the variables that results when 𝛽1 = 0, so the parameter 𝛾1 can only have a limited

impact on the dependence and variance of the variables. However, when 𝛽1 = 2, we see a clear pattern emerge both when the HNB

model is fitted with covariates and when it is not as shown in Figure 7. When covariates are not considered when fitting the HNB

model, the TLNPNmodel outperforms the HNBmodel most when 𝜌 = 0.9 and 𝛾1 = −0.8. We attribute this trend to the fact

that 𝛽1 is always non-negative in our simulations, therefore, if an increase in the covariate both increases the mean and decreases the

probability of a zero, then the resulting latent correlation, calculated from Kendall’s 𝜏 will be much stronger, which the TLNPN

model accommodates.

Despite this, when covariates are considered when fitting the HNBmodel, the pattern reverses, and the TLNPNmodel performs

worse when 𝛾1 = −0.8 and 𝜌 is large. We conducted a follow-up simulation study to investigate, and the result is displayed in Fig-

ure 10where we see that as 𝛾1 increases, the residuals between the simulated data and the test data greatly reduces, particularly for the

TLNPN data. Therefore, there are two trends at work that cause the TLNPNmodel to perform worse against the HNBmodel fitted

with covariates when 𝛾1 = −0.8 as compared to when 𝛾1 = 0.8 (given 𝜌 is high and 𝛽1 > 0). One, when 𝛾1 = −0.8, the probabil-

ity of a structural zero decreases as the covariate, and therefore the mean of the distribution, increases. This increases the correlation

between the zero-inflated variables, and the HNBmodel more accurately describes the correlation structure between the zero-inflated

variables than the TLNPNmodel, which tends to underestimate the correlation between the variables. Two, as the mean of the HNB
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distribution increases, the variance increases as well, which will increase the Wasserstein distance between test and simulated data.

However, the HNBmodel is better equipped to predict higher values compared to the TLNPNmodel because that model uses the

same covariates as the test data. We see that when 𝛾1 = 0.8, there is an improvement in the relative performance of the TLNPNmodel

against the HNBmodel fitted with covariates modeling the marginal distribution compared to when 𝛾1 = −0.8 as seen in Figure 9.

Therefore, the TLNPNmodel performs relatively better when 𝛾1 = 0.8 because it makes the occurrence of an extremely high data

point less probable, which we see in Figure 10where as 𝛾1 increases, the size of the residuals between the marginal distributions de-

creases dramatically. We also found that the level of zero-inflation or deflation had no effect on the relative model performance. We

conclude that this results from the ability of both models to account for both zero-inflation and zero-deflation.

Figure 12. In the left column, the HNBmodel is fitted without covariates, and in the right column, the HNBmodel is fitted with covariates. On the top row, we

consider when 𝛽1 = 0, and on the bottom row, we consider when 𝛽1 = 2. We see on the top row, that the TLNPNmodel and HNBmodel perform nearly identically

when 𝛽1 = 0 as the variables are practically independent and have much less variance compared to when 𝛽1 = 2. We see on the lower left heat map that the TLNPN

model outperforms the HNBmodel fitted without covariates most when 𝜌 = 0.01 and 𝛾1 = −0.8 as a result of the increased dependence among the variables. We see
in the lower right heat map, the TLNPNmodel performs worst relative to the HNBmodel when 𝜌 = 0.01 and 𝛾1 = −0.8 since the TLNPNmodel underestimates the
correlation among the variables and performs worse at modeling the marginal distributions.

We performed the simulation study where the covariates were generated from a GD correlation structure. Under the GD correlation

structure, we see results investigating the interaction between 𝜌 and 𝛽1 in Figure 11where when the HNBmodel is fitted without

covariates, the TLNPNmodel outperforms the HNBmodel when 𝜌 = 0.01 and 𝛽1 = 2. We conclude that this results from the

dependence among the HNB variables that results when the covariates are highly correlated and have a large impact on 𝜇𝑖 𝑗 , which

the TLNPNmodel accounts for, but the HNB does not. We see that when the HNBmodel is fitted with covariates, the HNBmodel

outperforms the TLNPNmodel most when 𝛽1 = 2 and 𝜌 = 0.01 since it more accurately describes the dependence structure and

can better predict large values. For both scenarios, we see that when 𝛽1 = 0, the models perform nearly identically as the zero-inflated
variables have almost no dependence among each other, and both models fit the marginal distributions similarly well.

We also investigated the interaction between 𝜌 and 𝛾1 under the GD correlation structure, which is presented in Figure 12. The in-

terpretation of these results is the same as the interpretation of the results when the covariates are generated from an AR correlation

structure; when 𝛽1 = 0, then 𝛾1 has very little impact on the dependence structure of the zero-inflated variables, so it doesn’t have an

impact on the relative performance between the TLNPN and the HNBmodels regardless of whether the HNBmodel was fitted with

covariates. However, when 𝛽1 > 0 and 𝛾1 < 0, then the correlation between the zero-inflated variables will strengthen since the higher

the mean of the distribution is, the lower the probability of a structural zero. When the HNBmodel is fitted without covariates, the

TLNPNmodel outperforms the HNBmodel the most when 𝜌 = 0.01 and 𝛾1 = −0.8; however, when the HNBmodel is fitted with
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covariates, the opposite is true due to the HNBmodel better describing the dependence structure and marginal distributions of the

zero-inflated variables.

SETTING THREE: COMPARING THE HNB AND TLNPNMODELS (WITH TLNPN POPULATION DATA)

In this simulation study, we again compare the performance of the TLNPNmodel to the HNBmodel, but use the TLNPNmodel

as the true model using Quantitative Microbiome Profiling (QMP) data.2We evaluated the performance of both models under dif-

ferent conditions. The motivation behind this simulation study is to evaluate how the two models compare under varying parameters

of the TLNPN population model, which include zero-proportion, latent correlation, and variance of the training data. We consider

both AR and GD correlation structures for the latent correlation matrix. We consider the GD correlation structure in order to sim-

ulate correlation matrices that are commonly found in real-world biomedical datasets, and we consider the AR correlation structure

in order to more directly evaluate the impact of 𝜌 on the relative performance of the models. We used the empirical CDF of both the

original (untransformed) data and the square root transformation of the data as the training data of the population TLNPNmodel

since the QMP dataset is extreme scale data, and we seek to investigate whether the scale and skewness of the data impacts relative

model performance. We also vary the proportion of zeros in the TLNPN data (ZP) to evaluate whether zero-proportion has an ef-

fect on relative model performance. Finally, we set the correlation parameter, 𝜌, at different values to evaluate if the dependence of the

variables has an impact on relative model performance. For this study, we generated the Gaussian-level variables with a correlation ma-

trix of 𝚺, so x𝑖 = (𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖5)� ∼ 𝑁𝑝 (0,𝚺), 𝑖 = 1, . . . , 𝑛 where 𝑛 = 1200. Let �̂�𝑗 be the empirical CDF of the 𝑗th variable of

the QMP data. We generate data such that 𝑦𝑖 𝑗 = �̂�−1
𝑗 ◦ Φ(𝑥𝑖 𝑗 ), 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑝 where 𝑝 = 5. In this study, we control

for the amount of zeros by subsetting on five variables in the QMP dataset that had the desired zero-proportions, then selecting those

to generate the TLNPN data. In particular, for the 𝑗th variable, �̂� 𝑗 = Φ(Δ 𝑗 ) where 𝐷 𝑗 = 𝑔−1
𝑗 (Δ 𝑗 ) and 𝑔−1

𝑗 = 𝐹−1
𝑗 ◦ Φ, which is

how each 𝐷 𝑗 is selected this in simulation study. We then split the population data into five folds, which we used for five-fold cross

validation. We fitted the TLNPN and HNBmodels to the training data and generated data from each model, and find the respective

Wasserstein distances between the simulated data and the test data. The average between the five-folds is then found and recorded.

Figure 13. In these heat maps, we compare the performance of the TLNPN and HNBmodels under TLNPN population data. On the left, the TLNPN population

model was trained on the untransformed QMP data. On the right, the TLNPN population model was trained on the square root of the QMP data. We see that in

both cases, the TLNPN universally performs better regardless of the zero-proportion of the data or 𝜌. Although there is no clear pattern in the first heat map, we see in

the second heat map, a clear pattern emerge: as 𝜌 decreases and as zero-proportion decreases (when 𝜌 = 0.05), the TLNPNmodel improves its performance relative to

the HNBmodel.

In this simulation study, we investigate the impact that the zero-proportion and correlation of the TLNPN variables have on relative

model performance. Our results for the GD correlation structure are presented in Figure 13. We see that when evaluating the models

under the TLNPN variables distributed as the original, untransformed data, there is no clear pattern; the TLNPNmodel outper-

forms the HNBmodel in all cases, but it’s not clear how zero-proportion or 𝜌 impacts the AMC of the HNBWasserstein distance to

the TLNPNWasserstein distance. However, when we use the square root of the data, we find a much clearer pattern. The lower 𝜌 is

when using the GD correlation structure, the better the TLNPNmodel performs relative to the HNBmodel.

In Figure 14, we present our results for the AR correlation structure. Here, our results are quite similar: the higher 𝜌 is (meaning

the higher the correlation between the latent Gaussian variables is), then the better the TLNPNmodel performs relative to the HNB

model. Again, we see that zero-proportion does not reliably impact relative model fit except when 𝜌 = 0.999999.
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Figure 14. In these heat maps, we compare the performance of the TLNPNmodel to the HNBmodel where the population data was generated from the TLNPN

model and the latent correlation matrix follows an AR correlation structure. On the left, the population TLNPN data was trained on the untransformed data, and on

the right, the population TLNPN data was trained on the square root of the QMP data. We see in both heat maps, the TLNPNmodel universally outperforms the

HNBmodel, and the TLNPNmodel performs best when 𝜌 = 0.999999 (i.e., when there is strong dependence among the variables). Additionally, we see that the

zero-proportion of the variables does not have a reliable effect on relative model performance except when 𝜌 = 0.999999 where as zero-proportion decreases, the AMC

decreases.

In Figure 13, we display results from the third simulation setting where we investigate the effect of zero-proportion, 𝜌 (under the GD

correlation structure), and the square-root data transformation on relative model performance. We see that in the square-root trans-

formation, the TLNPNmodel outperforms the HNBmodel most when 𝜌 = 0.05. We can attribute this to the higher correlation

between the zero-inflated variables, which the TLNPNmodel is able to account for as opposed to the HNBmodel. However, it still

seems that zero-proportion does not have an effect on the relative model performance. We attribute this to the fact that both models

can handle zero-inflation or deflation. We display our results for the AR correlation structure in Figure 14, and see in both the un-

transformed CDF and square-root transformation CDF, the TLNPNmodel improves its performance against the HNBmodel as 𝜌

increases. We again conclude that this is due to the TLNPNmodel’s ability to model dependence among the zero-inflated variables.

REAL DATA ANALYSES

Figure 15. This figure displays a schematic illustration of real data analysis procedure.

In this section, we compare the Hurdle model and the truncated latent Gaussian copula model in their ability to describe real data

examples. Our real data studies used datasets from a gut bacteria article2 and gene-sequencing data (https://www.10xgenomics.com).

We used regular validation, three-fold for the Quantitative Microbiome Profiling Data and five-fold for the gene sequencing data.

We trained the HNB and TLNPNmodels on all but one fold, then simulated data from those models and found theWasserstein

distance between the simulated data from each model with the final fold. We considered 50 random splits, and our analysis process is

graphically summarized in Figure 15. We summarize the relative performance of the models using AMC as given by Equation 3.

QuantitativeMicrobiome Profiling Data

As an example of real world zero-inflated data, we use Quantitative Microbiome Profiling (QMP) data.2 This data measures the num-

ber of 101 different genera of gut bacteria in 135 people (29 with Crohn’s Disease and 106 controls). We found that a limitation of fit-

ting the HNBmodel was that the most popular R function used to fit the HNBmodel (from the pscl package) was limited to inte-
gers less than or equal to 231 − 1. 18We had to rescale the data by taking the power of 0.851 of each data point and then rounding, which
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makes the maximum value of the data 231 − 1. The first, second, third, and fourth quartiles of the zero-proportion of the 101 variables
are 3.7%, 28.9%, 57.8%, and 79.3% respectively, and the data displays a high amount of skewness. The result of the analysis is displayed

in Figure 16.

Figure 16. The left box plot shows the Arithmetic Mean Changes (AMC), defined in Equation 3 of the HNBWasserstein distance to the TLNPNWasserstein

distance, based on 50 random splits of QMP data. The red line at zero marks the reference: points above indicate a better HNB fit, and points below indicate a bet-

ter TLNPN fit. The left panel shows that the TLNPN data had a lower 101-dimensional Wasserstein distance with the test data than the HNB data. We found the

one-dimensional Wasserstein distance between each of the variables of the test data and each of the variables of the simulated data from the models. The right panel

shows the AMC of the HNB to the TLNPN one-dimensional Wasserstein distance for each variable. Both models performed similarly on marginal distributions, but

TLNPNmodel consistently outperformed HNBmodel on the joint distribution.

We found that the TLNPNmodel outperformed the HNBmodel in terms of 𝑝-dimensional Wasserstein distance in every replica-

tion. We also see in Figure 16 a box plot of the AMC of the one-dimensional Wasserstein distances of the each of the 101 variables

from the HNBmodel to the TLNPNmodel.

Our first real data analysis compared the performance of the TLNPNmodel against the HNBmodel using the QMP dataset; the re-

sults are displayed in Figure 16where we see that the TLNPNmodel outperformed the HNBmodel with regard to 𝑝-dimensional

Wasserstein distance under every random split but performed similarly, on average, on a marginal level. We conclude that the differ-

ence between theWasserstein distances was a result of the TLNPNmodel accounting for dependence among the variables whereas

the HNBmodel does not model dependence among the variables. We see that the two models perform, on average, about the same

when modeling the marginal distributions, which rules out the explanation that the TLNPNmodel outperformed the HNBmodel

due to marginal fit.

To further emphasize this difference, we use the example of the second and fifth variables, which were significantly correlated with

each other, and compare how the HNB and TLNPNmodels modeled their joint distribution as compared with the test data. We see

in Figure 17 that there is a dependence between the variables in the test data, which the TLNPN data captures, but the HNB data

does not, leading to a higher Wasserstein distance for the HNB simulated data.

Single Cell RNA Sequencing Data

As another example of real data analysis, we use single-cell RNA sequencing data from the lymphoblastoid cell line; the original data

can be found on the 10x Genomics Datasets website (https://www.10xgenomics.com). This dataset measures 𝑝 = 329 genes from

𝑛 = 265 cells. The first, second, third, and fourth quartiles of the zero-proportion of the variables in the RNA dataset are 41.1%, 65.7%,
81.1%, and 89.8% respectively. In this case, we did not have to transform the data as all data points were already well below 231 and 95%

are below 10. However, we found in Figure 18 that the TLNPNmodel and HNBmodel performed similarly over the 50 replications

for the 𝑝-dimensional Wasserstein distance. Furthermore, we found that the HNB and TLNPNmodels performed similarly model-

ing the marginal distributions of the 𝑝 variables.
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Figure 17. Here, we compare the joint distributions of second and fifth variables of the HNB, TLNPN, and QMP test data to show how the TLNPNmodel is able to

model the dependence of the test data that the HNBmodel cannot.

Figure 18. The first box plot compares the overall performance of the TLNPNmodel to the HNBmodel under the RNA sequencing data. The y-axis displays the

AMC of theWasserstein distance generated by the HNBmodel to that of the TLNPNmodel, defined in Equation 3. The results are based on 50 random splits of the

gene sequencing data. The red line at zero marks the reference: points above indicate better HNB fit, and points below indicate better TLNPN fit. The second box

plot shows how the models compared when modeling marginal distributions. Overall, the HNB and TLNPNmodels performed similarly both for the joint distribu-

tion and the marginal distributions.

In this real-data analysis, we compared the TLNPNmodel to the HNBmodel using single cell RNA sequencing data; the results

of which are displayed in Figure 18. We see that the models perform similarly on a multivariate and marginal level. Based on these

results, we conjecture that the characteristics of this dataset, the small scale and a lack of highly correlated variables, resulted in the

similar performance of the HNB and TLNPNmodels. The TLNPNmodel is more robust to extreme values than the HNBmodel

fitted without covariates, but this dataset had very little skewness and variance in comparison to the QMP dataset, which contributed

to the TLNPNmodel performing similarly to the HNBmodel.

CONCLUSION

In this work, we sought to compare models for zero-inflated data through both simulation and real data studies that mimicked and

used modern biomedical data. Zero-inflated and hurdles models have been popularly used in this field and we sought to compare

them with the newly introduced truncated latent Gaussian copula model. The recent emergence of the TLNPNmodel created a gap

in the literature comparing the TLNPNmodel to the established zero-inflated and hurdle models, and this paper sought to compare

these models under different circumstances. Furthermore, in this work, we sought to find the weaknesses of the TLNPNmodel such

as its underestimation of correlation among zero-inflated variables and its struggles in modeling marginal distributions. We found in

the simulation studies and real data analyses that the main considerations for deciding to fit either the TLNPN or the HNBmodels

were access to covariates, variance of the data, and dependence among the variables.

The obvious advantage of using the TLNPNmodel is that it can account for dependence among variables without having access to
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Figure 19. We summarize the results of Simulation Setting Two under HNB population data where the covariates follow an AR correlation structure. We see that

when 𝛽1 = 2, the HNBmodel fitted with covariates outperforms the TLNPNmodel; as 𝛾1 decreases, the AMC further increases. When the HNBmodel is fitted

without covariates, the opposite trend emerges where the TLNPNmodel outperforms the HNBmodel, and the AMC decreases as 𝛾1 decreases (when 𝜌 = 0.7 or

𝜌 = 0.9). We also see that when 𝛽1 = 0, the two models perform nearly identically regardless of 𝜌, 𝛾1, or whether covariates are fitted in the HNBmodel.

the covariates in contrast to the HNBmodel. However, the TLNPN requires a large amount of training data to accurately estimate

the correlation of the Gaussian-level variables, and furthermore, in cases of strong dependence among the variables, the TLNPN

model tends to underestimate the correlation between the zero-inflated variables when the true model is a HNBmodel. Furthermore,

when the HNBmodel has access to the covariates, it tends to model the dependence structure between the variables much more accu-

rately. Nevertheless, when no covariate is available, the TLNPNmodel typically outperforms the HNBmodel in fitting multivariate

distributions of highly dependent zero-inflated variables. We see in Figure 19where the HNBmodel fitted with covariates outper-

forms the TLNPNmodel when 𝛽1 = 2 on account of its ability to better model dependence among the zero-inflated variables and the
marginal distributions. However, when 𝛽1 = 2 and the HNBmodel is fitted without covariates, the TLNPNmodel outperforms the
HNBmodel.

Another drawback of the TLNPNmodel is that when the true population is HNB with a high 𝛽1 parameter, the TLNPNmodel

struggles to model large, outlier values compared to the HNBmodel fitted with covariates. The TLNPNmodel will never predict

a data point outside of its original training data because of its use of the empirical CDF, so the training data must be similar to the

testing data for it to perform well. However, on a marginal level, the HNBmodel itself can be vulnerable to overdispersed and highly

skewed data, which the TLNPNmodel is better at fitting marginally. Furthermore, a computational limitation of the HNBmodel

is that the main function used to fit the data to a HNBmodel can only handle integer values below 231, so datasets with large values

may need to be rescaled, as modern biomedical datasets often contain extremely large measurements. This can pose challenges for

statistical analysis, as results may vary depending on the rescaling method used.

Future research could investigate how the TLNPNmodel performs against other models, particularly zero-inflated Poisson and hur-

dle Poisson models with an overdispersion parameter. Furthermore, investigation of incorporating covariates into the TLNPNmodel

will be an interesting research direction to pursue.
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PRESS SUMMARY

Many modern biomedical datasets have variables that are zero-inflated, and modeling these zeros correctly is critical for accurate statis-

tical analysis. We evaluate three models (zero-inflated negative binomial, hurdle negative binomial, and the truncated latent Gaussian

copula models) to see which performs the best under varying conditions. Specifically, we seek to evaluate whether the level of depen-

dence among the variables impacts which model performs the best.


