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ABSTRACT
This study introduces a regular five-point finite difference method for approximating the two-dimensional Poisson equa-
tion with Dirichlet boundary condition for convex polygonal domains. The Poisson equation frequently emerges in
many fields of science and engineering, such as field potentials and heat transfer. As exact solutions are rarely possi-
ble, numerical approaches are important to develop efficient and practical modeling. This introductory paper addresses
the uniqueness of the problem, finite difference discretization, consistency of the problem, and maximum norm error
analysis. We also provide numerical results that not only validate theoretical results but also demonstrate the method’s
efficiency. Principally, this paper intends to serve as a compilation of the research which underpins the finite difference
methods in a way that is unified, consistent, and accessible to undergraduates. Additionally, we have made the MAT-
LAB code for these results publicly available at the end of this paper for reference and practical implementation.
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INTRODUCTION
Many physical problems in engineering and physics can be modeled mathematically, giving researchers the chance to
precisely model the solutions, often via computers. These modeled problems are often governed by partial differen-
tial equations. The two-dimensional Poisson equation is a particular type of partial differential equation that describes
field potentials, heat transfer, image restoration and denoising, and many other applications. To be valuable, the two-
dimensional Poisson problem needs to be quickly solvable with a high degree of accuracy to ensure valid modeling of
these problems. Since the equation is a partial differential equation (PDE), solving problems of its type is challenging
to do using standard algebraic methods. Because only a small number of these PDEs have simple algebraic solutions, we
will attempt to solve the two-dimensional Poisson equation using sufficiently accurate numerical approximations. We
refer the readers to1–6 for a comprehensive discussion on partial differential equations, numerical analysis and its appli-
cations.

Finite-difference,7, 8 finite element,9, 10 and finite volume method11, 12 are three useful methods to numerically solve par-
tial differential equations. This study uses the finite difference method to numerically approximate the solution to the
Poisson equation. It works by replacing the continuous derivative operators with approximate finite differences. The
finite difference method is simple, effective, and one of the oldest methods to solve the Poisson equation. Although it
is one of the oldest methods ever devised, comprehensive information is difficult to find compiled in a single reference.
Therefore, this paper provides a complete study of the two-dimensional Poisson equation through a literature review,
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proof of uniqueness and consistency results using the 5-point difference scheme, theoretical error analysis and numerical
results.

One of the challenges of the two-dimensional version of this problem is the boundary constraints become complicated
and take up a large portion of the solution’s runtime.13 These irregular domains tend to show singular behavior near
sharp corners when using numerical solutions.14–17 In the presence of discontinuous coefficients and singular source
terms, these problems become more challenging.18, 19 Due to this, we will use rectangular domains, which simplify
the method and allow for easier understanding. For resources on problems involving non-convex domain, please refer
to5, 20–22 for extra study.

The rest of the article is organized as follows: In Methods and Procedures, we introduce our model problem, which is the
Poisson equation, and prove its uniqueness. Then, we present a five-point finite difference scheme to approximate the
solution to the Poisson equation. In Error Estimates, we present the theoretical maximum norm error estimates. Code
results and discussion are presented in Results to validate the theoretical results and the efficiency of the method. Lastly,
we conclude with a discussion of potential future works and a reiteration of the impact of this work. Please note that
the methods, theorems, and proofs presented in the following sections are drawn from other works, and as such are
available in the references listed in each section.

METHODS AND PROCEDURES
Finite difference methods are techniques to find approximate solutions to ordinary differential equations (ODEs) and
partial differential equations (PDEs) numerically. They are based on the idea of replacing the ordinary or partial deriva-
tives with a finite difference quotient. In some sense, a finite difference formulation offers a more direct and intuitive
approach to the numerical solution of partial differential equations than other formulations.

Poisson equation
In this section we discuss the Poisson equation in two dimensions

−Δu(x, y) = f(x, y) in Ω

u(x, y) = g(x, y) on ∂Ω
Equation 1.

where the operator Δ = ∂2

∂x2 +
∂2

∂y2 stands for the Laplacian operator and f is a given source function. The solution u of
Equation 1 is an unknown scalar potential function. In the Cartesian coordinate system, the two-dimensional Poisson
equation can be written as

−
(
∂2u

∂x2
+

∂2u

∂y2

)
= f(x, y) Equation 2.

where x, y represent independent spatial dimensions. Since the equation does not have a time-dependent component,
there are no initial conditions, making it a boundary value problem. The domain denoted as Ω = (a, b) × (c, d) repre-
senting a rectangle grid of this size and is subject to a Dirichlet boundary condition. The boundary of the domain de-
noted as ∂Ω . Next, we present the uniqueness theorem for the Poisson’s equation. We refer interested readers to1, 23–26

and references therein.

Uniqueness of Solutions to the Poisson Equation
The general version of the uniqueness theorem can be found in25. However, we will state and derive the two-dimensional
version of the uniqueness theorem below to verify the uniqueness of the solution to equation 2.

Theorem 1. Let Ω be an open subset in R
2. Then there exists at most one solution u in Ω to Equation 1 with Dirichlet bound-

ary conditions.

Proof. Suppose that p and q are two solutions to Equation 1. Let s be the difference between these two solutions such
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that,
s = p− q. Equation 3.

From Equation 1 and Equation 3 we get,

−Δs = −Δ(p− q) in Ω

s = p− q = g − g = 0 on ∂Ω .
Equation 4.

Due to the linearity property of the Poisson’s equation, and since p and q are solutions to Equation 1, we have −Δ(p −
q) = −Δ(p) + Δ(q) = f − f = 0 in Ω , with s = 0 on ∂Ω . This gives that −Δs = 0 in Ω . Thus, we can see that
s is twice differentiable and satisfies the Laplace equation and hence it is a harmonic function. The maximum principle for
harmonic functions says that every non-constant s must attain its maximum and minimum values on the boundary ∂Ω .
Since s = 0 on the boundary ∂Ω , by Equation 3, and s attains its maximum and minimum values on the boundary s

must be equal to 0 in all of the domain Ω . Since s = p− q we have p = q for all x, y in Ω . Therefore, we can conclude that
only one solution exists to Poisson’s equation (Equation 1).

Finite Difference Scheme
This section presents the five-point finite difference stencil27 for the two-dimensional Poisson equation, which involves
discretizing Equation 1 into a system of linear equations solvable through iterative methods. The following three steps
outline the process of generating the discretized system of equations.7

Step 1: Generate a mesh.

The mesh can be generated in a uniform Cartesian coordinate system as follows:

xi = a+ ihx, i = 0, 1, 2, 3, ..., n hx =
b− a

n
Equation 5.

yj = c+ jhy, j = 0, 1, 2, 3, ...,m hy =
d− c

m
Equation 6.

Let u(xi, yj) be the exact solution at a typical point (xi, yj) in domain Ω and ui,j be the approximate solution at that
same point. The solution on the boundary points is given in Equation 1 and using it our goal is to approximate the
solution at the interior points.

Step 2: Discretize derivatives.

From the Taylor series expansion for two variables, we represent the second order partial derivatives at the grid point
using the following derivation:

u(xi+1, yj) = u(xi, yj) + hx
∂u

∂x
+

(hx)
2

2!

∂2u

∂x2
+

(hx)
3

3!

∂3u

∂x3
+

(hx)
4

4!

∂4u

∂x4
+ ...

u(xi−1, yj) = u(xi, yj)− hx
∂u

∂x
+

(hx)
2

2!

∂2u

∂x2
− (hx)

3

3!

∂3u

∂x3
+

(hx)
4

4!

∂4u

∂x4
+ ...

Summing the two equations, we get

u(xi+1, yj) + u(xi−1, yj) = 2u(xi, yj) + (hx)
2 ∂

2u

∂x2
+

(hx)
4

12

∂4u

∂x4
+ ...

Solving for ∂2u
∂x2 , we get

∂2u

∂x2
= uxx ≈ u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)

(hx)2
− (hx)

2

12

∂4u

∂x4
+ ... Equation 7.
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Performing the same expansion u(xi, yj+1) and u(xi, yj−1), we can get the terms for ∂2u
∂y2 :

∂2u

∂y2
= uyy ≈ u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1)

(hy)2
− (hy)

2

12

∂4u

∂y4
+ ... Equation 8.

By adding Equation 7 and Equation 8, the two-dimensional Poisson equation can be approximated as follows:

−(f(xi, yj) + ei,j) =
u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)

(hx)2

+
u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1)

(hy)2

where i = 1, 2, 3, ..., n− 1 and j = 1, 2, 3, ...,m− 1

Equation 9.

Where ei,j includes the higher order terms of the Taylor series expansion. This is called the local truncation error,
which is accrued during the approximation process when choosing to stop the approximation at a specific term. For
our methods, we choose to derive to the fourth order approximation, with the fourth partial term representing the
largest term in the rest of the infinite series, and the majority of our error. The error ei,j that we use is defined in
Equation 10.

ei,j ≈ (hx)
2∂4u

12∂x4
(xi, yi) +

(hy)
2∂4u

12∂y4
(xi, yi) +O(h4), where h = max (hx, hy) Equation 10.

Figure 1. Five-point Finite Difference Stencil.

Since the local truncation error is small for small h values, it is reasonable to ignore ei,j for h << 0.5. For our five-
point stencil, as can be seen in Figure 1, we can ignore the error term ei,j and replace the exact solution u(xi, yj) at
the grid points with the approximate solution ui,j . Then we get the following discretized formula:

ui+1,j − 2ui,j + ui−1,j

(hx)2
+

ui,j+1 − 2ui,j + ui,j−1

(hy)2
= −f(xi, yj) Equation 11.

Equation 11 can be modified as follows:

ui+1,j + ui−1,j

(hx)2
+

ui,j+1 + ui,j−1

(hy)2
−

(
2

(hx)2
+

2

(hy)2

)
ui,j = −f(xi, yj) Equation 12.
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Note that the finite difference equation at the grid point (xi, yj) involves 5 neighboring grid points (xi+1, yj), (xi−1, yj),
(xi, yj+1), (xi, yj−1), and (xi, yj) in a five-point stencil. The five-point stencil, shown in Figure 1, is simply a finite
difference method in which five adjacent points in a grid are used. Without loss of generality, we can assume that hx =

hy = h, so Equation 12 can be updated to be

ui+1,j + ui−1,j − 4ui,j + ui,j+1 + ui,j−1 = −h2f(xi, yj). Equation 13.

Step 3: Build a system of linear equations.

From Equation 13 we can build a system of linear equations that can be described by the following matrix system. In
this case, we can express the discretized version of Equation 1 as a matrix equation shown below:

−AU = F Equation 14.

A represents the stiffness matrix corresponding to the Δ operator and F represents the given source term correspond-
ing to f(x, y), and U represents the discrete solution of Equation 1. The new matrix-vector form of Equation 14
yields the following:

A =
1

h2

⎡
⎢⎢⎣
M −1 0

−1 . . . −1
0 −1 M

⎤
⎥⎥⎦
m×m

whereM =

⎡
⎢⎢⎣

4 −1 0

−1 . . . −1
0 −1 4

⎤
⎥⎥⎦ ,

F =

⎡
⎢⎢⎣
−f(x1, y1)

...
−f(xm, ym

⎤
⎥⎥⎦ , and U =

⎡
⎢⎢⎣
u1,1

...
ui,j

⎤
⎥⎥⎦ .

Equation 15.

Error Estimate
This section discusses how well the numerical approximation determined by the five-point finite difference scheme ap-
proximates the exact solution of the two-dimensional Poisson equation for Dirichlet boundary conditions on a convex
polygonal domain. In this paper, we use rectangular domains only in order to simplify the computation and make it
easier to explain. Other polygonal domains can still be computed in this way, by simply performing a domain trans-
formation form the non-rectangular domain into a domain similar to the one in this paper. More information can be
found in.13, 17 To this end we start with the following three definitions and Theorem 2.

Definition 1 (Consistency2 ). Let Δh(u) = −(ui−1,j + ui,j−1 − 4ui,j + ui,j+1 + ui+1,j) denote the finite difference
approximation associated with the domain Ωh having mesh size h to the second order partial differential operator Δu =
∂2u
∂x2 + ∂2u

∂y2 . For a given function u ∈ C∞(Ω), the truncation error of Δh(u) is given by eh(x, y) = (Δ−Δh)u(x, y). The
approximation Δh(u) is consistent with Δ if lim

h→0
eh(x, y) = 0 for all (x, y) ∈ Ω and for all u ∈ C∞(Ω). Moreover, the

approximation is consistent to order p if eh(x, y) = (hp).

Definition 2 (Convergence2 ). Suppose −Δhφ(xj) = f(xj) to be a finite difference approximation to the partial differ-
ential equation −Δu(x) = f(x) defined on a grid with mesh size h for a simple connect domain Ω ⊆ R

2. Assume that
φ(x, y) = u(x, y) at all points (x, y) on the boundary ∂Ω . Then the finite difference scheme converges if

max
j
|u(xj)− φ(xj)| → 0 as h→ 0.

Definition 3 (Maximum norm7 ). For any grid function u : Ωh ∪ ∂Ωh → R, we define the maximum norms as follows:

‖u‖∞,Ω = max
(xi,yj)∈Ωh

|uij |,

‖u‖∞,∂Ω = max
(xi,yj)∈∂Ωh

|uij |.
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In the context of the two-dimensional Poisson equation, the Discrete Maximum Principle is crucial for proving the
uniqueness of the solution to the equation. It ensures that, for the discrete version of the problem, the solution behaves
similarly to the continuous case where the maximum or minimum of the solution is achieved on the boundary. If the
discrete solution uh satisfies the Discrete Maximum Principle, it is guaranteed that the discrete solution converges to
the true continuous solution as the grid resolution increases (in the case of a consistent and stable numerical method).

Theorem 2 (Discrete Maximum Principle7 ).

(i) IfΔhui,j ≥ 0 for all points (xi, yj) ∈ Ωh then,max(xi,yj)∈Ωh
ui,j ≤ max(xi,yj)∈∂Ωh

ui,j .

(ii) IfΔhui,j ≤ 0 for all points (xi, yj) ∈ Ωh then,min(xi,yj)∈Ωh
ui,j ≥ min(xi,yj)∈∂Ωh

ui,j .

Proof. We can prove (i) by contradiction. Assume that there exists some um,n ∈ Ωh, where um,n = K > 0, and K >

max∂Ω ui,j . Given a boundary value g(xi, yj) ≥ 0, we have

fm−0.5,num−1,n + fm+0.5,num+1,n ≥ [fm−0.5,n + fm+0.5,n + h2gm,n]um,n.

Since h2 is small, we remove it and the inequality holds. We also replace um,n with K and get

fm−0.5,num−1,n + fm+0.5,num+1,n ≥ [fm−0.5,n + fm+0.5,n]K.

Since um−1,n and um+1,n are smaller than K by assumption, we have

fm−0.5,num−1,n + fm+0.5,num+1,n ≤ [fm−0.5,n + fm+0.5,n]K.

With the inequality holding unless um+1,n = um−1,n = K. If we repeat this argument for all interior points in both grid
directions, we can conclude that all boundary points (xi, yj) ∈ ∂Ωh are equal to K, which contradicts our assumption of a
strict inequality, thus proving (i). The exact same logic using the minimum proves (ii).

Theorem 3. The five-point finite difference analogΔh(u) = −(ui−1,j +ui,j−1− 4ui,j +ui,j+1+ui+1,j) is consistent to order
2 for the Laplace operatorΔ = ∂2

∂x2 + ∂2

∂y2 .2, 7

Proof. Let u ∈ C∞(Ω) and (x, y) ∈ Ω be a point such that (x± h, y), (x, y± h) ∈ Ω ∪ ∂Ω . Then, by the Taylor Theorem
we have

u(x+ h, y) = u(x, y) + h
∂u

∂x
(x, y) +

h2

2!

∂2u

∂x2
(x, y) +

h3

3!

∂3u

∂x3
(x, y) +

h4

4!

∂4u

∂x4
(η±, y) Equation 16.

u(x− h, y) = u(x, y)− h
∂u

∂x
(x, y) +

h2

2!

∂2u

∂x2
(x, y)− h3

3!

∂3u

∂x3
(x, y) +

h4

4!

∂4u

∂x4
(η±, y) Equation 17.

where η± ∈ (x− h, x+ h). By adding Equation 16 and Equation 17, we get

1

h2
[u(x+ h, y)− 2u(x, y) + u(x− h, y)]− ∂2u

∂x2
(x, y) =

h2

4!

[
∂4u

∂x4
(η+, y) +

∂4u

∂x4
(η−, y)

]
Equation 18.

Recall that by the intermediate value theorem, we have
[
∂4u

∂x4
(η+, y) +

∂4u

∂x4
(η−, y)

]
= 2

∂4u

∂x4
(η, y)

for some value η ∈ (x− h, x+ h). Suppose

β2
x(x, y) =

1

h2
[u(x+ h, y)− 2u(x, y) + u(x− h, y)]
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and thus
β2
x(x, y) =

∂2u

∂x2
(x, y) +

h2

12

∂4u

∂x4
(η, y). Equation 19.

Similarly, we can obtain

β2
y(x, y) =

∂2u

∂y2
(x, y) +

h2

12

∂4u

∂y4
(x, μ). Equation 20.

for some μ ∈ (y − h, y + h). Finally, by adding Equation 19 and Equation 20, we can conclude that eh(x, y) = (Δ −
Δh)u(x, y) = O(h2). Thus, the five-point finite difference scheme is consistent to order 2.

Proposition 1. IfΔhuij = 0 for (xi, yj) ∈ Ωh, and uij = 0 for (xi, yj) ∈ ∂Ωh, then the zero function uij = 0 for all
(xi, yj) ∈ Ωh ∪ ∂Ωh is the only solution to the finite difference problem.

Proposition 2. IfΔhuij = fij for (xi, yj) ∈ Ωh, and uij = gij for (xi, yj) ∈ ∂Ωh, then there exists a unique solution to the
finite difference problem for grid functions fij and gij .

Lemma 1. Suppose that the grid function u : Ωh ∪ ∂Ωh → R satisfies the boundary condition uij = 0 for (xi, yj) ∈ ∂Ωh, then
we have the following estimate7:

‖u‖∞,Ω ≤
1

8
‖Δhu‖∞,Ω Equation 21.

By leveraging Proposition 2 and Lemma 1, we can establish the validity of our main theorem. This theorem asserts
that the solution derived from the five-point finite difference scheme converges to the exact solution of Equation 1.
Our proof for this convergence is outlined in the next section.

Theorem 4 ( 2, 7 ). Let u be a solution to the Poisson equation (Equation 1) and let û be the grid function that satisfies the dis-
crete system as follows:

−Δhûij = fij for (xi, yj) ∈ Ωh,

ûij = gij for (xi, yj) ∈ ∂Ωh.
Equation 22.

Then, there exists a positive constant C and a constant K =
∥∥∥∂4u
∂x4 + ∂4u

∂y4

∥∥∥
∞,Ω

such that

‖u− û‖∞,Ω ≤ CKh2.

Proof. For smooth functions f and g the theorem assumes that u ∈ C 4(Ω̄) since the constant K involves 4th derivatives.
By Equation 19 and Equation 20 we have the following estimate:

(Δh −Δ)uij =
h2

12

[
∂4u

∂x4
(ηi, yj) +

∂4u

∂y4
(xi, μj)

]
Equation 23.

for some ηi ∈ (xi−1, xi+1) and μj ∈ (yj−1, yj+1. Since −Δuij = fij , we have

−Δhuij = fij − h2

12

[
∂4u

∂x4
(ηi, yj) +

∂4u

∂y4
(xi, μj)

]
. Equation 24.

By subtracting Equation 22 from Equation 24, we get

Δh(uij − ûij) =
h2

12

[
∂4u

∂x4
(ηi, yj) +

∂4u

∂y4
(xi, μj)

]
. Equation 25.
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Note that u − û vanishes on ∂Ωh due to the imposed boundary conditions of Equation 1 and Equation 22. If we replace
u by u− û in Lemma 1, we obtain the following:

‖u− û‖∞,Ω ≤
1

8
‖Δh(u− û)‖∞,Ω

≤ 1

8
· h

2

12

∥∥∥∥∂
4u

∂x4
(ηi, yj) +

∂4u

∂y4
(xi, μj)

∥∥∥∥
≤ KCh2

The second equality is derived from Equation 25 and the third is derived from the definition of K. The last equality con-
cludes Theorem 4.

RESULTS
In this section we present a few numerical experiments to illustrate the computational method discussed in this paper.
The numerical experiments are performed on a laptop computer with MATLAB R2022a using a MacBook Air with
M1 chip. We use the following formula for the order of convergence. We use the following formula for the order of
convergence.

Order of convergence R =
log ((ui+1 − ûi+1)/(ui − ûi))

log
(
1
2

) ,

where ui+1 is the numerical solution in the state (i+ 1)th and ûi+1 is the analytical solution in the state (i+ 1)th.

Example 1. Consider the Poisson equation:

−Δu(x, y) = −2π2 sin(πx) sin(πy) in Ω

u(x, y) = 0 on ∂Ω ,
Equation 26.

where Ω = (0, 2)× (0, 2) and the analytical solution u(x, y) = sin(πx) sin(πy).

Test Case 1. In this example, we compare the numerical solution and the analytical solution with a sequence of different
meshes obtained through mesh refinements. We record the maximum norm error between the analytical and numerical
solutions in each mesh stage. Table 1 shows that numerical solutions approximate the true solution better when we de-
crease the step size. This guarantees that our numerical solution converges to the true solution. Figure 2 shows the analyt-
ical solution to Equation 26, and Figure 3 shows a sequence of numerical solutions to Equation 26 obtained through six
consecutive mesh refinements.
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Degrees of Freedom Max Norm Error ‖u− û‖∞

4 0.999984501426793

16 0.177517468002680

64 0.033384181128561

256 0.007287288315757

1024 0.001695751741142

4096 3.989211285880812e-04

16384 8.648598269755947e-05
Table 1. Maximum norm errors for consecutive mesh refinements.

Figure 2. Exact Solution.
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Numerical Solution

0

1

2

x0

0.5

1

1.5

2
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-1
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1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) N = 4 (b) N = 16

(c) N = 64 (d) N = 256

(e) N = 1024 (f) N = 4096

Figure 3. Numerical Solution for Six Consecutive Meshes.
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Test Case 2. Consider the Poisson equation (Equation 26) on a domain, Ω = (0, 1) × (0, 1). For this test case, we record
the error between numerical solution and analytical solution for each node on the same mesh. The solution values and
errors are displayed in Table 2. The error is small even with the initial stage of the mesh refinement. Figure 4 shows the
analytical solution and the numerical solution on a mesh with degrees of freedom N = 25.

Node (x,y) Analytical Solution Numerical Solution Error

(0.25, 0.25) 0.500000000000000 0.526514643772757 0.026514643772757

(0.5, 0.25) 0.707106781186547 0.744604150011472 0.037497368824925

(0.75, 0.25) 0.500000000000000 0.526514643772757 0.026514643772757

(0.25, 0.5) 0.707106781186547 0.744604150011472 0.037497368824925

(0.5, 0.5) 1.000000000000000 1.053029287545515 0.053029287545515

(0.75, 0.5) 0.707106781186547 0.744604150011472 0.037497368824925

(0.25, 0.75) 0.500000000000000 0.526514643772757 0.026514643772757

(0.5, 0.75) 0.707106781186547 0.744604150011472 0.037497368824925

(0.75, 0.75) 0.500000000000000 0.526514643772757 0.026514643772757
Table 2. Comparison of Analytical and Numerical Solutions on the same Mesh Refinement.

Figure 4. Comparison of Numerical and Analytical Solutions at N=25.

Example 2. In Example 2, we report convergence orders of the numerical solution of Equation 26 obtained through a
sequence of mesh refinements. Table 3 shows that the numerical convergence order R ≈ 2, which is in strong agreement
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with the convergent order shown in Theorem 3.

DoF 4 16 64 256 1024 4096 16384

R - - 2.4107 2.1957 2.1035 2.0877 2.2056

Table 3. Convergence Orders R for a Sequence of Meshes.

Example 3. In this example, we report the CPU time required by the five-point stencil finite difference method to solve
Equation 26 with f = 1 on a square domain Ω = (0, 1) × (0, 1). The results are presented in seconds for varying degrees
of freedom (DoF) for each mesh in Table 4. From Table 4, we can observe that the finite difference methods converge to
the true solution quickly.

DoF 4 16 64 256 1024 4096 16384

tCPU 0.00280 0.00591 0.00943 0.01425 0.03049 0.86497 44.80878

Table 4. CPU Time in Seconds.

CONCLUSIONS
This study presents a complete analysis of the two-dimensional Poisson equation. We present the derivation of a five-
point finite difference scheme and prove its uniqueness and consistency. We also present an infinity norm error estimate
and validate those results through numerical simulations. The numerical results presented in the tables and graphs show
that the present method approximates the exact solution efficiently with a quadratic convergence, validating our theo-
retical assumption.

This problem can be extended in several directions. Solving Poisson’s equation on a three-dimensional nonconvex polyg-
onal domains with a singularly perturbed parameter added to the Poisson’s equation will be an interesting problem
which requires more advanced numerical methods such as finite element methods to discretize the Poisson’s equation.
Another challenging task is to use the point delta function or the line delta function as the source term for the three-
dimensional Poisson’s equation. Lastly, this can be extended to higher-order PDEs, which have many real-world applica-
tions.

The MATLAB code can be accessible via the following link: https://github.com/mrwhalen22/2D\_poisson\_finite\
_difference.git
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PRESS SUMMARY
This paper describes a numerical procedure for simulating solutions to Dirichlet Poisson equations using MATLAB. In
addition, it can serve as a uniform summary of related literature needed for such a procedure such that anyone can read
and use finite difference schemes. This method of approximating differential equations is valuable in numerous fields
of engineering and physics. The main goal of this procedure is to make these equations automatable and solvable us-
ing computer technology for applications like fluid and heat simulations. Hopefully, this work can continue to be ex-
panded and adapted to non-Dirichlet boundary condition problems.


