
American Journal of Undergraduate Research www.ajuronline.org

 Volume 21 | Issue 3 | December 2024  

On the Center of Mass of the Half n-Ball

Hugh Riley J. Randall*, Carolina C. Ilie

Department of Physics and Astronomy, State University of New York at Oswego, Oswego, NY

https://doi.org/10.33697/ajur.2024.127

Student: hrandal3@oswego.edu*
Mentor: carolina.ilie@oswego.edu

ABSTRACT
This project explores how the center of mass (COM) of a half n-ball depends on the dimension, n. We study the case
of uniform density, where the COM is equivalent to the object’s centroid, or geometric center. We find a closed form
solution, a sequence describing the centroid in n dimensions, which confirms the common two and three dimensional
cases. Furthermore, the sequence is analytically proven to converge to zero in the limit as n approaches infinity.
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INTRODUCTION
When first learning mechanics we often begin by studying the motion of a point object. In general, determining the
motion of an extended object is more involved since they are essentially the collection of many individual point masses.
The way we can simplify these calculations is by treating the object as if all its mass were at a single point, its center of
mass (COM). As one would expect, the COM of the object depends not only on the shape of the object, but also the
mass distribution. For example, the COM of a ball with uniform density will be different than the COM of a ball that
has one hemisphere with a higher density than the other.

Since we can learn so much about the motion of a system by studying its COM, it is a common tool in many fields
of physics. For example, in many cases when studying orbital dynamics it is sufficient to consider the motion of the
centers of mass of the orbiting bodies. We find the COM used in many engineering applications as well. Specifically,
it is a great tool in designing buildings to be stable to seismic perturbation. By designing counterweights and balanc-
ing systems, it is possible to create systems which restore a building’s position given a perturbation to its foundation.1

A particularly interesting application of the COM comes from the field of biomechanics. One of the most common
models of balance is called the ‘inverted pendulum model’ in which the leg is approximated as a point mass situated
above the foot and connected by a rod.2,3 Moreover, the COM trajectory (in the sagittal plane) is of extreme impor-
tance when discussing the equilibrium of a person with prosthetics or humanoid robots, and such complex calculations
are performed using neural networks.4 Furthermore, the calculations of the COM in n-dimensions is a good introduc-
tion for students interested in string theory or in mathematics.5

Mathematically, the COM, C of an arbitrary massive object O is given by

C =
1

M

∫
O

�r dm,

where M is the total mass of the object, and �r is the vector pointing from the origin to the mass element dm.6 Notice
that this is simply the mass-averaged position vector. For our purposes we consider only the case of a uniform density
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Figure 1. Figure representing the two dimensional case. The length, r, and the angle, ϕ, show an arbitrary position vector lying in the disk. The dashed,
red vector represents the y-component which will be used for calculations.

distribution, in which case we can rewrite this integral in terms of volume by substituting M = ρV , dm = ρ dV ,
where ρ is the density and V is the total volume of the object. Then the integral simplifies to the volume averaged po-
sition vector,

C =
1

V

∫
V

�r dV Equation 1.

Therefore, if the object has uniform density, then the COM is entirely equivalent to the geometric center of the object,
or, its centroid.

Consider the following two examples, in which the COM of a half ball is found for two familiar cases: two and three
dimensions (adapted from problems 3.21 and 3.22 from Taylor).6

Two Dimensional Case
In the 2D case we have a half disk of radius R and a uniform mass distribution. The base of the disk is situated along
the x-axis with its center at the origin. A visualization of this system is shown as Figure 1. Due to the geometry of the
disk, it is more appropriate to use polar coordinates, where,

x = r cosϕ

y = r sinϕ

dA = r drdϕ.

From the symmetry of the object we know that the COM must lie along the axis of symmetry, the y-axis. This allows
us to simply replace �r (Equation 1) with the y-coordinate, y = r sinϕ. Thus,

C =
1

A

∫
y dA =

2

πR2

∫ π

0

∫ R

0

r2 sinϕ drdϕ =
4

3π
R ≈ 0.424R.

Notice that C represents only the y-component to the COM, however by our choice of coordinates the x-component
is 0 so C sufficiently defines the entire COM vector.

Three Dimensional Case
In this case there is a half sphere of radius R and a uniform mass distribution. The base of the half sphere lies on the
xy-plane with its center at the origin. This system is represented in Figure 2. Of course, it is best to use spherical coor-
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Figure 2. This figure represents 3-dimensional spherical coordinates, where ϕ1 is measured from the positive z-axis and ϕ2 is measured from the positive
x-axis. Similarly to Figure 1, the dashed, red vector represents the component which we use to calculate the COM, in this case, the z-component.

dinates, where,

x = r sinϕ1 cosϕ2

y = r sinϕ1 sinϕ2

z = r cosϕ1

dV = r2 sinϕ1 drdϕ1dϕ2.

Similarly to the 2D case, symmetry dictates that the COM lies along the z-axis. Then,

C =
1

V

∫
z dV =

3

2πR3

∫ π/2

0

∫ 2π

0

∫ R

0

r3 cosϕ1 sinϕ1 drdϕ2dϕ1 =
3

8
R = 0.375R.

Notice that similarly to the two dimensional case, the COM is a vector in 3-dimensional space, but since the z-component
is the only non-zero component, C sufficiently describes the COM. This convention will be used for the general n-
dimensional case as well.

If we compare the two and three dimensional cases we find that C2 = 0.424 > 0.375 = C3, or in words, when we
moved up one dimension the COM became closer to the origin. This begs the question of what happens when we con-
tinue increasing the dimension. In this paper we look to answer the following two questions:

1. As the number of dimensions increases, does the COM continue moving closer to the origin?
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2. If so, does the COM of the half n-ball converge to zero as intuition would predict?

In principle, we could examine the trend in higher dimensions by directly computing the fourth, fifth, and even higher
dimensional cases individually. However, as we will see, we can analytically solve the problem without ever specify-
ing the dimension n, and as in any problem in physics, generalizing the solution leads to deeper understanding. This
theoretical exercise will not only yield the general solution, but it will give us insight into the pattern we see at lower
dimensions. In the following sections we will address the above questions by constructing a closed form describing the
COM in the arbitrary n-dimensional case. Since the domain of this function is the natural numbers, this solution is a
sequence and so we may then use techniques from calculus and analysis to study the convergence of this sequence.

RESULTS
The n Dimensional Case
When we generalize the above examples to n-dimensions, we must work in n-dimensional spherical coordinates. The
generalization is fairly obvious with Cartesian coordinates. Let {ei | i ∈ I} be a set of orthonormal vectors, where I

is our indexing set. Then in n-dimensional space a vector �x can be written as �x = ξ1 e1 + ξ2 e2 + . . . + ξn en, where
ξi is the component of �x in the ei direction7. In spherical coordinates however, the vector �x can be expressed in terms
of one radial component, r, and n − 1 angular coordinates as �x = (r, ϕ1, ϕ2, . . . , ϕn−1), where r ≥ 0, ϕj ∈ [0, π] for
j ∈ {1, 2, . . . , n − 2}, and ϕn−1 ∈ [0, 2π). Just as in the lower dimensional cases, trigonometry can be used to change
bases and convert from spherical to Cartesian coordinates. The conversion is given by Equations 2, 3, 4, and 5 below,7

ξ1 = r cosϕ1 Equation 2.

ξj = r cosϕj

j−1∏
k=1

sinϕk (j = 2, . . . , n− 2) Equation 3.

ξn−1 = r sinϕn−1

n−2∏
k=1

sinϕk Equation 4.

ξn = r cosϕn−1

n−2∏
k=1

sinϕk Equation 5.

It may not be immediately clear where these change-of-basis equations come from, however understanding it is critical
to determining the centroid of the half hyper-sphere. In two and three dimensions the axis of symmetry was obvious
visually, however visual arguments no longer suffice when working in higher dimensional spaces. That being said, the
three dimensional case can help give us some visual intuition. It is clear from the Equations 2-5 above that ϕ1 is the an-
gle ranging from 0 to π, measured from the positive e1 axis. Due to this, the cosϕ1 term of ξ1 shows that it is the pro-
jection of �x onto the e1 axis. Similarly, ϕ2 is orthogonal to ϕ1 and is measured from the positive e2 axis. This means
that written out, ξ2 = r sinϕ1 cosϕ2. In this case, the sinϕ1 term projects �x onto the n − 1 dimensional subspace or-
thogonal to e1, and the cosϕ2 term then projects it onto the e2 axis. This process continues so that the ξj component
is projection of �x onto the n − (j − 1) dimensional subspace spanned by {ej , ej+1, . . . , en−1, en}, and then projected
onto the ej axis. This ends when we are left only with a two dimensional subspace spanned by {en−1, en}, with ϕn−1

running from 0 to 2π measured from the positive en to the positive en−1 axis. This explains why the only difference
between ξn−1 and ξn is the cosϕn−1 term on ξn and the sinϕn−1 term on ξn−1. For a concrete example, consider
n = 3. Then, (ξ1, ξ2, ξ3) = (z, y, x), ϕ2 is the angle running from the positive x-axis to the positive y-axis, and ϕ1 is
the angle from the positive z-axis to the xy-plane.

In order to calculate the centroid according to Equation 1 above, we need the volume of an n-dimensional half ball,
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Vn, and the n-dimensional spherical volume element, dV . From Blumenson,7

dV = rn−1
n−2∏
k=1

sink(ϕn−1−k) drdϕ1dϕ2 . . . dϕn−1

dV = rn−1 dr sinn−2(ϕ1) sin
n−3(ϕ2) . . . sin(ϕn−2) dϕ1dϕ2 . . . dϕn−1 Equation 6.

Additionally, from Smith8 and Wang9 we have that the n-ball of radius R defined by the set

Bn = {x = (x1, . . . , xn) | x2
1 + . . .+ x2

n ≤ R2}

has the volume

V (Bn) =
2πn/2

nΓ(n2 )
Rn, Equation 7.

In the formula, Γ(n/2) represents Euler’s gamma function evaluated at n/2.

We can simplify Equation 7 using some gamma function identities. The gamma function is Euler’s extension of the
factorial function to non integer arguments. As such, it satisfies some properties that match the behavior of factorial
function. For example,10 for any x > 0,

xΓ(x) = Γ(x+ 1), Equation 8.

and in particular, if n is a natural number then,
Γ(n+ 1) = n! Equation 9.

just as we would expect. The two properties shown by Equations 8 and 9 above can be used to show that for the case
of even n,

Γ
(n
2

)
=

(n
2
− 1

)
! Equation 10.

In the case that n is odd,

Γ
(n
2

)
=

π
1
2 (n− 2)!!

2
(n−1)

2

Equation 11.

Equation 10 is a direct result of Equation 9, and Equation 11 can be proven easily via induction. Now that we have
closed form solutions for the gamma function evaluated at integer and half integer arguments, we can plug into Equa-
tion 7 and divide by two to get the volume of the half n ball. Since Γ(n2 ) depends on the parity of n, then the volume
of the half n ball, which we denote by Vn, is given by the following piecewise formula,

Vn =

⎧⎪⎪⎨
⎪⎪⎩

πn/2

n(n
2−1)!R

n for even n

(2π)[(n−1)/2]

(n)!! Rn for odd n

Equation 12.

Now that we are equipped with the adequate tools, we are finally prepared to solve Equation 1 in the arbitrary n-
dimensional case. Recall Equation 1

C =
1

V

∫
V

�r dV.

For the half n-ball, this integral turns into,

C =
1

Vn

∫
Vn

�r rn−1
n−2∏
k=0

sink(ϕn−1−k) dϕn−1−k. Equation 13.

Recall from the two and three dimensional cases that if a convenient choice of axes is chosen, we can force the axis of
symmetry to lie along one of the Cartesian unit vectors. In other words, if we align the axis of symmetry with one
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of the bases of the Cartesian coordinate system, say ek, then �r can be replaced with ξk. Recall that for n-dimensional
spherical coordinates, angular components ϕ1 through ϕn−2 run from 0 to π, and ϕn−1 runs from 0 to 2π. To create a
half ball we simply restrict the domain of one of the angles. For the sake of simplicity, let ϕ1 run only from 0 to π/2,
thus making ξ1 the component which lies along the axis of symmetry. This turns Equation 13 into,

C =
1

Vn

∫
Vn

r cos(ϕ1) r
n−1

n−2∏
k=0

sink(ϕn−1−k) dϕn−1−k

=
1

Vn

∫ R

0

rn dr

∫ π/2

0

cos(ϕ1) sin
n−2(ϕ1) dϕ1

∫ π

0

. . .

∫ π

0

n−3∏
k=1

sink(ϕn−1−k) dϕn−1−k

∫ 2π

0

dϕn−1, Equation 14.

For n > 1, integrating by parts gives us that
∫ π/2

0

cos(ϕ1) sin
n−2(ϕ1) dϕ1 =

1

n− 1
Equation 15.

By using Equation 15 and integrating the radial and ϕn−1 terms, we simplify Equation 14 to the following,

C =
2πRn+1

(n+ 1)Vn

1

n− 1

∫ π

0

. . .

∫ π

0

n−3∏
k=1

sink(ϕn−1−k) dϕn−1−k Equation 16.

Now all that remains is to solve the multiple integral at the end of Equation 14. Notice that for any k, sink(ϕn−1−k)

is a function of only one variable, and so we may use Fubini’s theorem to split this multiple-integral of a product into
a product of single integrals, or,

∫ π

0

. . .

∫ π

0

n−3∏
k=1

sink(ϕn−1−k) dϕn−1−k =
n−3∏
k=1

∫ π

0

sink(ϕn−1−k) dϕn−1−k Equation 17.

Now, using the power reduction formula we find,
∫ π

0

sinn(x) dx = − 1

n
sinn−1(x) cos(x)

∣∣∣∣
π

0

+
n− 1

n

∫ π

0

sinn−2(x) dx

=
n− 1

n

∫ π

0

sinn−2(x) dx. Equation 18.

Thus, as a result of our bounds, we have a recursive relation describing the solution to the integral. This recursion rela-
tion can be repeatedly applied to attain closed form solutions to Equation 18. If n is even then,

∫ π

0

sinn(x) dx =

(
n− 1

n

)(
n− 3

n− 2

)
. . .

(
3

4

)∫ π

0

sin2(x) dx =
(n− 1)!!

n!!
π, Equation 19.

and if n is odd then,
∫ π

0

sinn(x) dx =

(
n− 1

n

)(
n− 3

n− 2

)
. . .

(
2

3

)∫ π

0

sin(x) dx =
(n− 1)!!

n!!
2. Equation 20.

More concisely, we have,

∫ π

0

sinn(x) dx =

⎧⎪⎪⎨
⎪⎪⎩

π(n−1)!!
n!! for even n

2(n−1)!!
n!! for odd n

Equation 21.
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We can now use the above equation to simplify Equation 17. From Equation 21 we see that the only difference be-
tween the odd and the even case is whether the integral carries a factor of 2 or a factor of π. Consequently, when we
take the product of these integrals it is important to count how many odd terms and how many even terms are in each
product. Notice that if n is even, then n − 3 is odd, which means that the product has n−4

2 + 1 terms with k odd, and
n−4
2 terms with k even. Similarly, in the case that n is odd, then n − 3 is even, meaning there are n−3

2 terms with k

even and n−3
2 terms with k odd. Therefore, putting this all together we have that,

n−3∏
k=1

∫ π

0

sinn(x) dx =

⎧⎪⎪⎨
⎪⎪⎩
2(n−4)/2+1π(n−4)/2

[
(n−4)!!
(n−3)!!

(n−5)!!
(n−4)!! . . .

(2)!!
(3)!!

(0)!!
(1)!!

]
for even n

2(n−3)/2π(n−3)/2
[
(n−4)!!
(n−3)!!

(n−5)!!
(n−4)!! . . .

(1)!!
(2)!!

(0)!!
(1)!!

]
for odd n

which is a telescoping product which simplifies nicely as,

n−3∏
k=1

∫ π

0

sinn(x) dx =

⎧⎪⎪⎨
⎪⎪⎩
2(2π)(n−4)/2 1

(n−3)!! for even n

(2π)(n−3)/2 1
(n−3)!! for odd n

Equation 22.

Putting together Equations 12, 16, and 22, we get that for even n

C =
2πRn+1n(n2 − 1)!

(n+ 1)πn/2Rn

(
1

n− 1

)(
2(2π)(n−4)/2 1

(n− 3)!!

)
=

2n/2

π

n(n2 − 1)!

(n+ 1)!!
R, Equation 23.

and if n is odd, we find that,

C =
2πRn+1(n)!!

(n+ 1)(2π)[(n−1)/2]Rn

(
1

n− 1

)(
(2π)(n−3)/2 1

(n− 3)!!

)
=

n!!

(n+ 1)!!
R Equation 24.

Thus, the centroid of an n-dimensional half ball of radius R can be described with the following (piecewise) sequence
which depends only on the parity of n,

Cn =

⎧⎪⎪⎨
⎪⎪⎩

2n/2

π

n(n
2−1)!

(n+1)!! R for even n

n!!
(n+1)!! R for odd n

Equation 25.

Notice that since the centroid is a function of n we now add the subscript to Cn to specify the dimension. Overall this
is a very interesting result but there are some questions which remain. For example notice that the value of Cn is much
more concise for odd values of n than for even values of n. This suggests that there may be a more elegant way to ex-
press Cn for even n. If it exists, what is this expression? Additionally, one of the benefits of having a closed form ex-
pression for Cn as a function of n is that we may now test the global properties of the sequence. Specifically, does the
sequence converge? If so, what does it converge to? The following sections work to find an alternate expression for the
even subsequence and to test Cn in general for convergence.

Simplifying the Even Case
Let Gn be the even subsequence (Cn for even n). Then for all even integers n > 0, Gn is defined by Equation 26,

Gn =
2n/2

π

n(n2 − 1)!

(n+ 1)!!
Equation 26.
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Consider the value of Gn+2. By definition we have,

Gn+2 =
2

n
2 +1(n+ 2)(n2 )!

π(n+ 3)!!

Gn+2 =
2 ∗ 2n/2(n+ 2)n2 (

n
2 − 1)!

π(n+ 3)(n+ 1)!!

Gn+2 =
n+ 2

n+ 3

2n/2n(n2 − 1)!

π(n+ 1)!!

Gn+2 = Gn
n+ 2

n+ 3

Thus, there is a recursive relation describing Gn. Just as we did before in determining the value of
∫ π

0
sinn(x) dx, we

can repeatedly apply the recursive relation to relate Gn to the base case G2 which has a known numerical value, mean-
ing we once again have a closed form expression for Gn. In general, for any even positive integer n,

Gn =
2

π

n!!

(n+ 1)!!
Equation 27.

Therefore, we can express the even sequence in a much more elegant way, matching the form of the odd sequence. This
gives us the revised definition for Cn,

Cn =

⎧⎪⎪⎨
⎪⎪⎩

2
π

n!!
(n+1)!! R for even n

n!!
(n+1)!! R for odd n

Equation 28.

This alternative form of expressing the even sequence makes proving that Cn converges a much simpler task. Since the
even and odd sequence only differ by a numerical factor, if we can show that the odd sequence n!!

(n+1)!! is convergent
then proving that the even sequence converges is trivial.

The Convergence of Cn

In this section we discuss the convergence of our sequence, Cn. Note that since Cn is a monotonic, decreasing sequence,
bounded below by zero, then it must be that Cn converges to something. Then proving convergence alone is not too
difficult of a problem. The true goal of this section is to show, specifically, that Cn converges to zero. Then let Un =

n!!
(n+1)!! be the subsequence of Cn for all odd n.

Proposition 1. Un converges to zero as n goes to infinity.

Proof. By definition, limn→∞ Un = 0 if for any ε > 0 there exists some N ∈ N such that for all n ≥ N ,
∣∣∣∣ n!!

(n+ 1)!!

∣∣∣∣ < ε.

Since Un is positive for all n then this requirement is the same as

n!!

(n+ 1)!!
< ε,

or
(n+ 1)!!

n!!
>

1

ε
.

In words, since Un is always positive, to show that it converges to zero is equivalent to showing that the inverse is not
bounded above.
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Let an = 1
Un

= (n+1)!!
n!! be a sequence defined for positive odd integers, n. We can express this using product notation as

follows,

an =

n−1
2∏

k=0

2k + 2

2k + 1
.

With some algebra we find,

an =

n−1
2∏

k=0

2k + 2

2k + 1

=

n−1
2∏

k=0

(
1 +

2k + 2

2k + 1
− 1

)

=

n−1
2∏

k=0

(
1 +

1

2k + 1

)

By Theorem 3 of Section 28 in Knopp,11 we know that in the limit as n → ∞, an converges if and only if limn→∞
∑n−1

2

k=0
1

2k+1

converges. By the integral test, the series
∑n−1

2

k=0
1

2k+1 is clearly divergent and so an must be divergent as well. Therefore,
since an is not bounded above, then Un converges to zero as n → ∞. QED

The above proof only deals with the the odd sequence, Un, however since Gn has the same form, the same process shows
that Gn converges to zero as well. Therefore, we have shown that as n → ∞, Cn → 0.

DISCUSSION
This result leads to many interesting points. First, notice that due to the symmetry, the centroid of the n-ball is simply the
origin regardless of the dimension. Then from the previous sections we see that as the dimension increases, the centroid of
the half n-ball approaches the centroid of the n-ball. In other words, the higher the dimension of the n-ball, the more the
mass becomes concentrated near the origin.

The case of the half n-ball is quite interesting, yet it leads to some natural following questions. In this project we focus
solely on the case of uniform density, meaning the mass integral can be changed to a volume integral. It is interesting to
consider what would happen to the centroid if the density depended on the radius rather than staying constant. Suppose
the density took the form ρ(r) = rk, where k is an integer. If k is negative then the mass concentration increases as you
approach the origin and we expect that the COM would converge to zero at a faster rate. However if k > 1 it could lead
to some interesting cases. For example, for k 	 1, you can approximate the ball as if all the mass is distributed throughout
the surface, and rather than dealing with the n ball we would be dealing with its outer shell. Additionally, is there some
sort of critical mass distribution for which Cn does not converge as n → ∞? Furthermore, all these questions deal with
spherical geometries. What sort of trends are present when we consider the higher dimensional analogs of other shapes?
Do we still expect their COMs to converge to the origin in higher dimensions. Consider the hypercube. Regardless of the
dimension, the distance from the hyper cube’s COM to the origin is the same. Could there be some shape for which the
COM moves farther from the origin as we increase the dimension? Clearly, many related questions remain, and in the fu-
ture it would be interesting to explore these alternative density distributions and geometries.

CONCLUSIONS
This project worked to generalize the problem of the COM of the half disk (2D) and half ball (3D) to the arbitrary n-
dimensional case with the goal of both generalizing our 2D and 3D solutions as well as gaining more understanding as to
why we see the trend we do at lower (n ≤ 3) dimensions. In order to solve the problem in n dimensions we leveraged the
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spherical symmetry of the system just as in the lower dimensional cases. First, we chose the basis so that the axis of sym-
metry lies along only one of the Cartesian axes. This allowed us to describe the COM vector using only one component
which simplifies calculations substantially. After choosing the correct coordinate system, solving the integral was possible
with a few intermediate steps. As a result we derived a function for the COM which depends purely on the number of di-
mensions n. By finding a closed form function describing the centroid of the half n-ball, not only do we construct a more
general solution but we also are now able to test the global properties of the function as we vary n. The ability to explore
trends in an analytic way gives us a much deeper insight to the problem. In particular, we show that limn→∞ Cn = 0.
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PRESS SUMMARY
This project explores the center of mass (COM) of a certain class of objects in different dimensions. The COM is an im-
portant property in physics used to determine the motion of objects as it drastically simplifies calculations. In particular,
we study the half n-dimensional ball, for example the half disk (n = 2), half ball (n = 3), and their higher (n > 3) di-
mensional analogues. In our study, we let the density of the object be constant throughout so that the COM is the same as
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the physical center of the object, known as the centroid. Rather than performing manual computations for each individ-
ual case we find a formula describing the centroid in any dimension. Furthermore, we analyze the trend as the number of
dimensions increases. We show that as the number of dimensions increases infinitely, the centroid of the half n-ball gets
arbitrarily close to centroid of the full n-ball.


