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ABSTRACT
The resampling method of k-fold cross-validation is popular for error estimation and model selection in computational
research. However, there is limited focus in the literature on the question of what fold number k is appropriate for var-
ious dataset dimensions. Here we review relevant literature and present a simulation of linear and least absolute shrink-
age and selection operator (LASSO) regression prediction error estimation at various values of k and sample size n. In
agreement with current literature, we find that contrary to a persisting understanding, there is no bias-variance trade-off
in selection of k. Instead, with increasing k both bias and variance decrease, perhaps asymptotically. Our results also
suggest a predictable relationship between optimal values of k and n.
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INTRODUCTION
Cross-validation, also known as k-fold cross-validation, is a popular method of error estimation for model selection in
computational research. In this method, n observations are first divided into k groups. In a first iteration, k − 1 groups
are used as a training set. The remaining group is used as a test set to calculate estimated prediction error (P̂E). This
process is repeated i times, with a different test set in each iteration. The average of k estimates of PE

θ̂ = CV(k) =
1

k

k∑
i=1

P̂Ei Equation 1.

is meant to estimate the true model error θ, i.e., the error of the model tested on the population.1 When the objective
is to choose a best-performing model of a set, CV(k) is calculated for each candidate model and the model with the
lowest CVk is usually selected.

Despite the popularity of cross-validation, there is limited focus in the literature on the question of what fold number
k is appropriate for cross-validation with a dataset of a given size. One popular idea is that selection of k comes with a
bias-variance trade-off—specifically, that as k increases, the bias Bias(θ̂) = E(θ̂)−θ and variance V ar(θ̂) = E(θ̂2)−E(θ̂)2
of k-fold error estimation decrease and increase, respectively. This idea appears in early literature but also in modern,
widely used textbooks.4, 5, 7 If the idea that the choice of k is associated with bias and variance, via a bias-variance trade-
off or differently, is true, then the selection of k can drastically influence model performance and selection.

Subsequent, albeit limited, literature argues differently. In the case of leave-one-out cross-validation (LOOCV), i.e., with
k = n, some authors suggest that asymptotically both bias and variance of error estimation decrease as k increases and
that bias and variance of error estimation are uniformly low.9, 10
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More recently, different ways have been proposed to quantify the variance reduction achieved by cross-validation when
the true prediction error (PE) is not known, e.g., as mean-square stability or as loss stability.11, 12 However, it has also
been demonstrated that, due to overlap between training and test sets in cross-validation, there is no universal (i.e.,
valid under all distributions) unbiased estimator of the variance of k-fold cross-validation.13

In addition to theoretical analyses, there are some simulation results showing the phenomenon of variance reduction by
cross-validation. However, simulations currently in the literature provide limited insight into the dependence of opti-
mal fold number koptimal on sample size n or involve biased variance calculations.14, 15 Here we present a simulation of
linear regression and least absolute shrinkage and selection operator (LASSO) regression to observe the relationship of
cross-validation fold number k to model selection accuracy for various samples of size n under the assumptions of lin-
ear regression.19 Our focus is a known population with a feature Y of the form Y = β0+β1X1+ · · ·+β5X5+ ε where
β1 = · · · = β5 = 1, ε ∼ N(0, 10), and mean squared error (MSE) is the loss function.

METHODS AND PROCEDURES
In machine learning tasks, the values of 5 and 10 traditionally have been used as the values of k in k-fold cross valida-
tion and here we evaluate these choices and alternatives.20 With the results of the following simulation, we make a dif-
ferent recommendation of k with the aim of improving model selection accuracy.

Population
Consider a population of size N = 500,000 with five of P = 100 features X1...X100 ∼ N(0, 1) a linear combination of
feature Y = β0 + β1X1 + · · ·+ β5X5 + ε where β1 = · · · = β5 = 1 and ε ∼ N(0, 10). The true model of Y is f ∈ F , a
set of competing models. f = E(Y ) = β0 + β1X1 + · · ·+ β5X5 and its MSE is

θ = MSE(f) =

∑N
i=1[Yi − E(Yi)]

2

N
. Equation 2.

Sampling and regression
From the population we take a sample of size n. We estimate Y as Ŷ by regression on a subset of X1...X100, regres-
sion coefficients estimated by the least squares method, and compute MSE(Ŷ ) by k-fold cross-validation as

θ̂ = MSE(Ŷ ) =
1

k

k∑
j=1

∑n/k
i=1(Yji − Ŷji)

2

n/k
Equation 3.

where ji is the index of the ith element of the jth fold.

In addition to regression with X1...X5, f , we under-fit with X1...X3, over-fit with X1...X20 and X1...X100, and do
regression with noise X6...X100 only, for each k ∈ 2, 10, 20, 30, ..., n for each n ∈ 100, 200, 300, ..., 1000.

Simulation
We perform this simulation 1000 times and then calculate simulation-wise MSE(θ̂) for each k, for each n.

We perform an additional 1000 simulations predicting Y as Ŷ by LASSO regression instead of linear regression for
each k ∈ 2, 10, 20, 30, ..., 100, n for each n ∈ 250, 500, 750, 1000. To avoid data leakage, in which testing data is used
in model training2, 3, we introduce an inner 5-fold cross-validation loop for the selection of parameter λ as in the mini-
mization of

p∑
i=j

(Yj − βj)
2 + λ

p∑
j=1

|βj |. Equation 4.

For each k, for each n, we count the number of times A that the true model is selected and consider as optimal fold
number for each n the value koptimal, at which A is the highest.
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This is because in practice the model with the lowest P̂E is more likely to be selected.16 We refer to this as lowest-
error model selection. As our simulation results show, however, it is possible for k-fold cross-validation to result in cal-
culations of MSE(θ̂) such that a competing model f̂ ∈ F has a lower P̂E than the true model f . This false model may
have the lowest P̂E but its generalization error will be higher in the long-run (i.e., when tested on a large part of the
population) than the generalization error of the true model. Thus, it is preferable for the value of k selected to result
in f having the lowest P̂E.

Fold number as a function of sample size
Having considered the effect of k on model selection accuracy for a given n, we may also consider the relationship of
koptimal and n. Our results suggest that after a certain value of k, changes in A become negligible, in the case of linear
regression, or negative, in the case of LASSO regression, and resource-expensive increases of fold number become unde-
sirable. We refer to this "point of diminishing returns" as k∗optimal using the "elbow method" commonly used in cluster
analysis.17

To estimate k∗optimal for each n, we first fit to the dataset (k,A) for each sample size n a hypoethhical model of the
form

Â(k) = Bk + C +
D

k
Equation 5.

with constants B to D specific to each n. Certain more complicated models (e.g., with higher-order terms) may pro-
vide better approximation of A but make optimization by the following scheme non-trivial. We draw a line L through
(k1, Â1) and (kn, Ân) and maximize the perpendicular distance d of each point on Â from L, so that

k∗optimal = argmaxkd[Â(k), L]

= argmaxkd[Bk + C +
D

k
, y − (Bn+ C +

D

n
) = m(x− n)]

= argmaxkd[Bk + C +
D

k
, y − (Bn+ C +

D

n
) =

(Bn+ C + D
n )− (2B + C + D

2 )

n− 2
(x− n)]

= argmaxkd[Bk + C +
D

k
, y − (Bn+ C +

D

n
) = (B − D

2n
)(x− n)]

= argmaxkd[Bk + C +
D

k
, (B − D

2n
)x− y + C +

D

2
+

D

n
= 0] Equation 6.

It is known that the distance d between a point (k, Â(k)) and a line of the form

ax+ by + c = 0 Equation 7.

is

d =
|ak + bÂ(k) + c|√

a2 + b2
Equation 8.

so

k∗optimal = argmaxkd[Bk + C +
D

k
, (B − D

2n
)x− y + C +

D

2
+

D

n
= 0]

= argmaxk
|(B − D

2n )k − (Bk + C + D
k ) + (C + D

2 + D
n )|√

(B − D
2n )

2 + (−1)2
. Equation 9.
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Maximizing d, knowing that n and k are always positive, we find that

d

dk
d[Â(k), L] =

d

dk

⎛
⎝ |(B − D

2n )k − (Bk + C + D
k ) + (C + D

2 + D
n )|√

(B − D
2n )

2 + (−1)2

⎞
⎠

=
|n||k|(2nD −Dk2)(−Dk2 − 2nD + nDk + 2Dk)

nk3| −Dk2 − 2nD + nDk + 2Dk|√D2 + 4n2
= 0

⇒ k = 0, 2,
√
2n, n. Equation 10.

Evaluating d at these four values of k, we find that

d(0) = DNE

d(2) = 0

d(
√
2n) =

|nD + 2D −√2nD −D|√
(B − D

2n )
2 + (−1)2

d(n) = 0. Equation 11.

Since d(
√
2n) > 0,

k∗optimal =
√
2n Equation 12.

which fits the relationship of k∗optimal vs. n (Figure 9).

A note on LASSO
It may seem that the choice of k = 5 for the selection of λ by cross-validation is presumptive for a study that seeks to
determine the best value of k for cross-validation. If the choice of k influences the value of λ, it influences the subset of
models that will be competing with f . Does k∗optimal change with the subset of models competing with f? Replications
of this simulation varying k only in the selection of λ may elucidate.

RESULTS AND DISCUSSION
Interpretations of early literature have resulted in lasting misconceptions about the use of cross-validation. Such miscon-
ceptions include the idea that there is a bias-variance trade-off Bias2(θ̂) ∝ 1/V ar(θ̂) associated with selection of k and
that k = 10 is the best value to use in k-fold cross-validation.5–8

In agreement with a small but growing body of literature, our simulation results suggest that neither of these ideas are
necessarily correct. Instead, in the context of linear and LASSO regression with standard normal data and certain ran-
dom error, we find that for various n both bias and variance decrease as k increases (Figures 1 - 6), i.e., Bias2(θ̂) ∝
V ar(θ̂), and although in the case of LASSO, 10-fold cross-validation seems to be a near-optimal choice for large n, for
smaller samples and linear regression other values of k appear to be optimal for model selection (Figures 7 and 8; Table
1).

Table 1. Optimal values of k for sample sizes n in linear regression.

n 100 200 300 400 500 600 700 800 900 1000
Optimal k 14 20 25 28 32 35 37 40 42 45

Table 2. Optimal values of k for sample sizes n in LASSO regression.

n 100 250 500 750 1000
Optimal k 14 22 32 39 45
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Figure 1. Linear regression squared bias vs. fold number for various sample sizes. As fold number increases, bias decreases initially before leveling off.
See Figure 10 in appendix for more sample sizes and fold numbers over 50.
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Figure 2. Linear regression variance vs. fold number for various sample sizes. As fold number increases, variance decreases initially before leveling off.
See Figure 11 in appendix for more sample sizes and fold numbers over 50.
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Figure 3. Linear regression mean squared error vs. fold number for various sample sizes. As fold number increases, mean squared error decreases
initially before leveling off. See Figure 12 in appendix for more sample sizes and fold numbers over 50.
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Figure 4. Linear regression squared bias vs. fold number for various sample sizes. As fold number increases, bias decreases initially before leveling off.
See Figure 13 in appendix for fold numbers over 50.
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Figure 5. LASSO regression variance vs. fold number for various sample sizes. As fold number increases, variance decreases initially before leveling off.
See Figure 14 in appendix for fold numbers over 50.
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Figure 6. LASSO regression mean squared error vs. fold number for various sample sizes. As fold number increases, mean squared error decreases
initially before leveling off. See Figure 15 in appendix for fold numbers over 50.
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Figure 7. For linear regression, the proportion of times the true model has the lowest mean squared error vs. fold number for various sample sizes. As
fold number increases, the proportion of times that the true model is selected increases, but the rate of this increase declines. See Figure 16 in appendix
for fold numbers over 100 and more sample sizes.
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Figure 8. For LASSO regression, the proportion of times the true model has the lowest mean squared error vs. fold number for various sample sizes. As
fold number increases, the proportion of times that the true model is selected increases, but the rate of this increase declines. See Figure 17 in appendix
for fold numbers over 100 and more sample sizes.
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Figure 9. Sample size vs. fold number. As sample size increases, optimal fold number increases at a diminishing rate.

Note that the case of linear regression with n = 100 and number of features p = 100 is not displayed because there are
n − p − 1 = −1 degrees of freedom, which is not a sufficient number for regression. The case of n = 100 and p = 95

degrees of freedom is similarly problematic and is not displayed because the high level of error in bias, variance, and
MSE estimation associated with n− p− 1 = 5 degrees of freedom obscures important patterns in the rest of the data.

As previous authors have noted,14 it is important to distinguish between possible goals of cross-validation that previ-
ously have been conflated5: estimation of PE, in which case koptimal = argmink(PE − P̂E), and model selection, in
which case

koptimal = argmaxk(A) Equation 13.

which is related to the definition of k∗optimal used in this study.

We find that in the cases of both linear and LASSO regression, as n increases, k∗optimal increases but at a lower rate than
n, such that k∗optimal/n decreases, perhaps asymptotically. For LASSO regression, we also find that as k increases past
a certain value, lowest-error model selection becomes less reliable, i.e., Â decreases, i.e., the true model has the lowest
MSE less frequently (Figure 8). The rate of this reduction increases with n.

The reason for this is related to what is known as the cross-validation paradox18: greater quantity of data results in
more accurate estimation of PE; occasionally, this makes model-wise differences in P̂E = CV(k) less exaggerated, mak-
ing it more difficult to distinguish between models and resulting in less accurate model selection.

However, we do not observe the cross-validation paradox in our linear regression simulations. Although cross-validation
results in similar bias-variance reductions in both cases, in the case of linear regression Â increases with increasing k ini-
tially before leveling off. However, this is not surprising, as our linear regression simulation does not involve variable
selection, so that the differences in models are more pronounced. To observe the cross-validation paradox in linear re-
gression would require comparison of more similar linear models predisposed to similarity in P̂E, as in the simulation
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of LASSO regression.

In the cases of both linear and LASSO regression, k∗optimal/n seems to change predictably with n. Specifically, it may
be possible to model the relationship with some asymptotically decreasing function, while the relationship between
k∗optimal and n seems to follow a positive pattern (Figures 9 and 10).

CONCLUSIONS
Early literature suggests that increasing cross-validation fold number is related to decreasing bias and increasing variance
of error estimation. However, more recent work suggests that this is not the case. Instead, increasing k results in bias
and variance reduction. This phenomenon is observable in our simulation results, which suggest that bias and variance
decrease asymptotically with increasing k.

Our results also indicate a predictable relationship between k∗optimal and sample size n. Although further data and anal-
ysis are needed to draw any reliable conclusions, modeling the relationship between n and k∗optimal would have practical
utility, potentially improving the selection of k from a largely arbitrary decision between 5 and 10.

Future research may also focus on error estimation of other models, including models capturing non-linear relation-
ships or involving tuning of multiple hyper-parameters, e.g., random forest or gradient boosting. It may also be inter-
esting to study the value of k in repeated cross-validation or nested cross-validation, with the value of k variable in the
inner loop, outer loop, or both, as the use of k = 5 for the selection of λ in this simulation is a notable limitation of
the study.

Comparisons of k-fold cross-validation and other model selection tools like the Akaike information criterion (AIC), the
Bayesian information criterion (BIC), and forward or backward selection are also of interest.
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PRESS SUMMARY
In the field of data science, k-fold cross-validation is a popular method for estimating model error and selecting optimal
models. It involves splitting a dataset into k parts, or folds, training a model on each of those parts, and averaging the
models’ respective errors as an estimate of "true" model error. What has received limited attention in the literature is
the following question: what is the optimal number of parts to split a dataset into for the purposes of error estimation
and model selection? Here we explore this question and simulate the results of different fold number selections in two
different model settings. We suggest that there may be a predictable relationship between optimal values of k and n.


