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ABSTRACT
A method is presented to demonstrate the application of computer simulations in the kinematic analysis of planar
mechanisms, emphasizing its use in teaching the latter topic in a corresponding undergraduate course. Concepts of
rigid-body dynamics are utilized in the kinematics of machines to analyze the motions (and forces in dynamics) trans-
mitted within multiple interconnected links that make a mechanism, such as a car engine, airplane landing gear, press
machine, door closer, and so on. Due to the tediousness of the analytical solutions, most textbooks limit the deriva-
tion of the equations to four-bar linkages like crank-rocker and crank-slider mechanisms. Benefiting from the advance-
ments in computer programs, such as MATLAB, and their efficiency in solving large systems of linear and nonlinear
equations, a method is proposed to facilitate teaching kinematic analysis of multi-bar linkages to undergraduate stu-
dents while fostering the application of computational engineering via real-life examples. The results obtained from this
method are shown to be in excellent agreement with the algebraic solution of the relative motion equations for each
element in the mechanism.
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INTRODUCTION
Mechanisms play important roles in a wide range of technologies, such as aircraft, steam engines, car engines, robotics,
satellites, door closers, and so on1–3. At their core, these mechanisms are multi-body systems of interconnected links
with the purpose of transmitting motion and force.

The design and synthesis of mechanisms to generate certain outputs (e.g., motion, path, or function) depend signifi-
cantly on kinematics1, 4. The modern-day knowledge of kinematics of mechanisms and multi-body systems is based to
a great extent on the works of Franz Reuleaux (German engineering scientist, considered as the “father of kinematics”
by some) and his two major books, “The Kinematics of Machinery”, and “The Constructor”1, 5, 6. Reuleaux’s books and
advocacy in mathematical approaches to mechanical engineering and machine kinematics inspired further development
of texts in the late 19th and early 20th centuries, such as Kennedy, Hartmann, and Grübler1, 7–9.

While the importance of understanding and studying the kinematics of machines is undeniable, derivation of stand-
alone sets of governing equations for each type of linkage (four-bar, five-bar, etc.) can be mathematically “tedious”, as
shown by Norton4. As a result, the concentration of such techniques available in the literature (a summary of which
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is given in the proceeding paragraphs) is limited mainly to four-bar (like crank-rocker and crank-slider mechanisms) and
very few specific multi-bar linkages.

Norton and Uicker demonstrated the graphical analysis of the positions, velocities, and accelerations of linkages4, 10.
Vector sums of the corresponding relative motion equations for two points on each link are represented graphically at a
chosen scale. Although applicable, this method is not ideal for linkages with more than four bars or kinematic analysis
of a linkage for its full range of motion, especially when analyzing accelerations composed of normal and tangential
components.

Algebraic solutions for partial or complete kinematic analysis of specific four-bar mechanisms were explained by Nor-
ton, Uicker, and Martin4, 10, 11. Similar to the graphical method, vector sums of the relative motion equations are solved
here for two points (typically joints) on each link based on the constraints imposed on each joint by the neighboring
links. Although computer programming enables kinematic analysis of mechanisms for their full range of motion, ex-
tending this approach to linkages with more than four bars is time-consuming. Additionally, neither the graphical nor
the algebraic solutions are specific to machine kinematics but an extension of the concepts of kinematics to intercon-
nected bodies.

Analytical methods using vector loops and complex-number algebra were introduced by Norton, Uicker, Russell, Vino-
gradov, and Martin4, 10–13. At least one vector loop is constructed for a mechanism. The vector-loop equations are writ-
ten in the complex-number format and expanded using Euler’s identity to develop a set of n equations and n unknowns.
For example, 1-DOF (Degree-of-Freedom) four-bar mechanisms lead to a set of two equations with two unknowns.
The computation of the degrees of freedom (mobility) of a mechanism is demonstrated in the following section. The
analytical solutions of these equations can be challenging and virtually impractical as the number of links increases4.
Also, the number of unknowns for linkages with more than one degree of freedom exceeds the number of equations.

The vector loop approach and complex-number algebra combined with the capabilities of scientific computer programs,
such as MATLAB and Python, provide an opportunity to develop a robust and efficient approach for the kinematic
analysis of machines. Uicker mentioned position analysis of multi-bar linkages using numerical methods, such as Newton-
Raphson, but mostly focused on abstract analytical solutions10. Russell introduced the application of MATLAB specific
to a few examples but did not generalize it to arbitrary configurations of links12. A computational simulator for a five-
bar “Gantry” mechanism was created using Python, Javascript, and Coördinator14.

Despite recent advancements in scientific computer programs, for example, in solving large systems of linear and non-
linear equations and differential equations, their incorporation in relevant engineering courses remains inadequate. The
current work aims to show the possibility of filling this gap in the context of developing a purely computational ap-
proach to the kinematics of machines by proposing a technique that merges classical multi-body dynamics and com-
puter programming. The fundamentals of this method are based on generating the vector loop equations for mecha-
nisms. However, instead of attempting to solve the large system of equations analytically, the goal here is to utilize the
functionalities of MATLAB.

The advantage of the proposed method is twofold. First, it promotes the kinematic analysis of multi-bar mechanisms
through a computational process of solving the vector loop equations instead of relying on commercial programs, like
Working Model. Second, a stand-alone computer program can be produced by incorporating graph theory that identi-
fies the vector loops automatically based on the provided input and performs a complete kinematic analysis for the full
range of motion of the mechanism.

It is important to note that the goal here is not to undermine the significance of or eliminate the graphical, algebraic,
and analytical methods described in the literature. An understanding of the fundamentals of classical dynamics is essen-
tial to validate the results obtained from numerical methods using in-house programs or commercial applications.
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Figure 1. A schematic of an eight-bar linkage with one horizontal and two vertical sliders.

METHODS AND PROCEDURES
To demonstrate the proposed method, take the example of an eight-bar linkage shown in Figure 1. This mechanism
consists of one horizontal slider (l4 ) and two vertical sliders (l6 and l8.) The rotational motion of the input crank (l2 )
is transferred to the horizontal slider by the connecting rod l3. The connecting rods l5 and l7 transmit the horizontal
translation of l4 to the vertical translations of l6 and l8, respectively.

The revolute full joints O2, A, C, and D are of Order one, whereas the Order of the revolute full joint B is three.
There are three prismatic joints connecting the three sliders to the ground. In total, there are ten full joints and no half
joints in this eight-bar mechanism. The mobility (Degree-of-Freedom) of this mechanism is one, given by Equation 14

M = 3(L− 1)− 2J1 − J2 = 3(8− 1)− 2(10)− 0 = 1 Equation 1.

where M , L, J1, and J2 are the mobility, number of links, number of full joints, and number of half joints, respec-
tively.

Vector Loop Generation
Vectors connect two joints on the same link so long as both joints connect the link to two adjacent links. The tail of
each vector falls on the head of the vector representing an adjacent link. The ground link in each loop also has a vec-
tor. A local coordinate system is associated with each vector at its tail to demonstrate its direction. It is reasonable to
choose a unique type of coordinate system, such as Cartesian, for all the local coordinate systems.

Ideally, a mechanism should be divided into multiple 1-DOF vector loops consisting of up to four links or two un-
knowns. The number of vector loops in a 1-DOF linkage is equal to the number of different joints connecting a link
to the ground minus one. For example, in the eight-bar mechanism of Figure 1, four links (l2, l4, l6, and l8 ) have
ground-connecting joints. Hence, this linkage can be represented by three vector loops (explained in the following),
each consisting of three vectors, as shown in Figure 2. It is important to note that the fourth vector in each of the
loops is the “offset” vector associated with sliders, all of which are set to zero for convenience but not necessity.

The first vector loop is O2AB. This loop consist of vectors
−−→
O2A,

−−→
AB, and

−−→
BO2 whose complex-number notations are

aejθ2 , bejθ3 , and cejθ4 , respectively, where j =
√−1. In these equations, a, b, and c are magnitudes of the vectors,

whereas θ2, θ3, and θ4 represent the direction of each vector. In this loop, a, b, and θ4(= 180°) are constant, θ2 is the
input angular position of l2, θ3 is the unknown angular position of l3, and the unknown rectilinear motion of slider l4
is given by c.

The second vector loop, BCE, consists of vectors
−−→
BC,

−−→
CE, and

−−→
EB with respective complex-number notations dejθ5 ,
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Figure 2. Corresponding vector loops for the eight-bar linkage.

kejθ6 , and (h − c)ejθ9 . A virtual point E is chosen for this vector loop because it consists of two sliders. This virtual
point can be placed anywhere; however, it is reasonable to choose a location that leads to convenient angles for the vec-
tors. For instance, the constant angles θ6 and θ9 are 270° and 180°, respectively. The input to this vector loop is c, cal-
culated in the first loop, and the two unknowns are the angular position, θ5, of l5 and the vertical length k. The length
of the

−−→
EB equals the constant h minus the input c.

The third vector loop, BDE, consists of vectors
−−→
BD,

−−→
DE, and

−−→
EB represented by the complex-number notations

mejθ7 , gejθ8 , (h − c)ejθ9 , respectively. It is observed that vector
−−→
EB is common between the second and third loops.

The two unknowns in this loop are the angular position, θ7, of l7 and the vertical length g, while the input is the hori-
zontal position, c, of slider l4, as in the second vector loop. The angle θ8 is constant at 90°.

Vector Loop Equations
For each loop in the linkage, it can be written that, due to the method of generating the vector loops, the sum of the
vectors equals zero. Since there are three vector loops in the mechanism shown in Figure 2, three vector loop equa-
tions can be written for its position analysis in the complex-number notation.

⎧⎪⎪⎨
⎪⎪⎩

aejθ2 + bejθ3 + cejθ4 = 0

dejθ5 + kejθ6 + (h− c)ejθ9 = 0

mejθ7 + gejθ8 + (h− c)ejθ9 = 0

Equation 2.

Equation 2 can be simplified to Equation 3 by applying the known constants described above. Further simplification
of this equation is not necessary in the development of the computational algorithm.

⎧⎪⎪⎨
⎪⎪⎩

aejθ2 + bejθ3 + cejπ = 0

dejθ5 + kej
3π
2 + (h− c)ejπ = 0

mejθ7 + gej
π
2 + (h− c)ejπ = 0

Equation 3.

The six unknowns of this system of equations are θ3, θ5, θ7, c, g, and k. Taking the first and second time-derivatives of
Equation 3 gives the necessary systems of equations to compute the velocity and acceleration of each link. Hence, for
the three vector loops considered here, the velocity and acceleration equations are given by Equations 4 and 5, respec-
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tively. ⎧⎪⎪⎨
⎪⎪⎩

jaω2e
jθ2 + jbω3e

jθ3 + ċejπ = 0

jdω5e
jθ5 + k̇ej

3π
2 − ċejπ = 0

jmω7e
jθ7 + ġej

π
2 − ċejπ = 0

Equation 4.

⎧⎪⎪⎨
⎪⎪⎩

jaα2e
jθ2 − aω2

2ejθ2 + jbα3e
jθ3 − bω2

3ejθ3 + c̈ejπ = 0

jdα5e
jθ5 − dω2

5ejθ5 + k̈ej
3π
2 − c̈ejπ = 0

jmα7e
jθ7 −mω2

7ejθ7 + g̈ej
π
2 − c̈ejπ = 0

Equation 5.

Each system of equations above has two unknowns per equation, for a total of six unknowns. These unknowns are
ω3, ω5, ω7, ċ, ġ, and k̇ for Equation 4 and α3, α5, α7, c̈, g̈, and k̈ for Equation 5. The input angular position (θ2 ) and
angular velocity (ω2 ) of link l2 can be calculated using dynamics principles (ω =

∫ t
t0

αdt + ω0, and θ =
∫ t
t0

ωdt + θ0.)
To solve for the six unknowns, the real (Re) and imaginary (Im) components of its complex equations are set equal to
zero, leading to two individual equations for each vector loop equation. For instance, the expansion of Equation 3 is
given in Equation 6. Equations 4 and 5 can also be expanded similarly.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Re[aejθ2 + bejθ3 + cejπ] = 0

Im[aejθ2 + bejθ3 + cejπ] = 0

Re[dejθ5 + kej
3π
2 + (h− c)ejπ] = 0

Im[dejθ5 + kej
3π
2 + (h− c)ejπ] = 0

Re[mejθ7 + gej
π
2 + (h− c)ejπ] = 0

Im[mejθ7 + gej
π
2 + (h− c)ejπ] = 0

Equation 6.

Although the components of a complex number can be derived using Euler’s identity (ejθ = cos(θ) + jsin(θ)), corre-
sponding built-in MATLAB functions are utilized in this method.

RESULTS
Vector Loop Generation Algorithm
The problem of automatically detecting loops for mechanisms is very similar to finding cycles (vector loops) in an
undirected graph. The vectors for any cycle inherently form edges between connection points or pins on a link, which
are called nodes. Any graph has a finite number of unique cycles, starting and ending with the same node. The pro-
posed method requires that each edge in a cycle is traversed only once.

Figure 3 shows the decomposition of the mechanism in Figure 1 in terms of edges and neighbors. Pin A on link l2 is
defined by nodes 3 (on l2 ) and 4 (on l3 ), and so on. Each node is attributed by the link to which it belongs and the
nodes with which it neighbors. Node 3 belongs to link l3 and neighbors nodes 2 (on l2 ) and 4 (on l3 ). In other words,
one of the neighboring nodes belongs to the same link, and the other one belongs to an adjacent link. One edge is de-
fined between nodes 2 and 3, both of which belong to link l2. Another edge is defined between nodes 3 and 4, which
belong to links l2 and l3, respectively. The edges that connect nodes on adjacent links are shown with dashed lines in
Figure 3.

The method described here requires the minimum number of cycles to cover every node and edge in the graph that
represents the mechanism. For instance, the eight-bar mechanism of Figure 1 can be represented by six possible loops,
but only three cycles are needed to cover all the nodes and edges. The cyclebasis function in MATLAB gives the mini-
mum number of cycles for a given graph. This information is used to find the order of the links and directions of the
vectors and is necessary when generating the vector loop equations ensuring that every link is included without redun-
dancy.
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Figure 3. For each link, a node is created for points that connect to a neighboring link. Edges are formed at these connections and within the link it-
self. For example, l2 would contain nodes 2 and 3, and node 3 would be neighbors with nodes 2 and 4. When defined this way, each loop can be found
starting from and ending at the ground reference point, node 1. This method can be generalized for any mechanism.

For the numerical method presented here, an adjacency matrix is defined first. This is a square matrix whose rows rep-
resent a node of interest and whose columns refer to the neighboring nodes to that node. If the nodes represented by a
row-column combination are connected by an edge, the corresponding element of the adjacency matrix takes a value of
one. Otherwise, that element of the matrix will have a zero value. The adjacency matrix can be developed in a for loop
as shown in the snippet below.

When the adjacency matrix is formed, it is provided as an input to the graph function that converts the matrix into a
graphical object. The graphical object is used as the input to the cyclebasis function to generate the minimum number
of unique cycles that represent the graph corresponding to the mechanism. The following snippet shows the MATLAB
code for the steps explained above.

A = zeros(num_points+1); % Adjacency matrix as a square matrix of zeros

% We use the number of points +1 to account for the ground node

% Use nested for-loops to populate the elements of A

% First the link, second for each node on the link

for l = 1:length(LinkData)

for p = 1:(LinkData(l).Point)

currentNode = LinkData(l).Point{p}.NodeIndex;

neighbors = LinkData(l).Point{p}.Neighbor;

A(currentNode,neighbors) = 1; % If the nodes are connected, set the value to 1.

end

end

G = graph(A); % Convert the matrix to graphical object.

cycles = cyclebasis(G); % Obtain the minimum unique cycles for the graph.

Figure 4 demonstrates the graph network defined for the eight-bar mechanism shown in Figure 1 using the cyclebasis
function in MATLAB. Three vector loops are automatically created for this mechanism because it can be divided into
three 1-DOF linkages. Each loop has an area that does not overlap with the others and is essentially called a basis cy-
cles.
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Figure 4. Graph network representation of the eight-bar linkage.

Fundamentals of Numerical Solution to the Vector Loop Equation
In this section, the steps in developing a computational solution of Equation 6 (and similar expansion of Equations 4
and 5) are explained. It is assumed that the initial angular and linear positions of the links are obtained using graphical
or analytical linkage synthesis methods and that the initial angular velocity and angular position of the input crank, l2,
are known.

Time values are stored in an array, e.g., t=0:del_t:t_end, where the variables for time interval (del_t) and final time
(t_end) are previously defined. The amplitudes and angles of the vectors are stored in two arrays with the number of
rows equal to the number of time points and the number of columns equal to the number of links, e.g.,
L=zeros(length(t),8) and theta=zeros(length(t),8). Arrays of the same order are defined to store the veloci-
ties and accelerations. The first row of these arrays corresponds to the initial condition of the linkage at t = 0.

The time array is used to calculate the angular velocity and position of the input crank for all time points using a known
angular acceleration, α2. In case of a constant angular acceleration, the angular velocity and position of the input crank
are stored in the first columns of their arrays using

alpha(:,1)=alpha_2;

omega(:,1)=alpha_2*t+omega_2i;

theta(:,1)=0.5*alpha_2*t.^2+omega(:,1).*t+theta_2i;

in which omega_2i and theta_2i represent variables for the initial angular velocity and position of l2.

Since the amplitudes of the vectors representing rotating rigid rods are constant, their values are stored in all the rows
of the corresponding columns of the amplitude array. Here, the constant lengths of links l2, l3, l5, and l7 are stored in
the first, second, fourth, and sixth columns of the magnitude array (e.g., L(:,1) = a; where a is determined through
linkage synthesis.)

Similarly, the angles of the vectors representing the sliding links are constant and can be stored in the angle array. In
this case, the links l4, l6, and l8 are sliders, and their angles are stored in the third, fifth, and sixth columns (e.g.,
theta(:,3)=pi;). The constant angle of the vector

−−→
EB is stored in all the rows of the eighth column of this array.

The remaining elements of the arrays mentioned above are determined through an iterative numerical method which
requires an initial guess as the solution for the unknowns. Here, the six unknowns in Equation 6 are the angular posi-
tions of l3, l5, and l7, and the linear positions of l4, l6, and l8. Hence, the values obtained for these variables in linkage
synthesis are used as the initial guess to facilitate a quick convergence for the position analysis solver.
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pos_ini = [theta(1,2) L(1,3) theta(1,4) L(1,5) theta(1,6) L(1,7)];

After the successful completion of the position analysis, an initial guess for velocity analysis is made using the forward-
difference method.

vel_ini = [(theta(2,2)-theta(1,2))/del_t (L(2,3)-L(1,3))/del_t ...];

Similarly, an initial guess for acceleration analysis is generated via numerical differentiation of velocity using the forward-
difference method.

acl_ini = [(omega(2,2)-omega(1,2))/del_t (V(2,3)-V(1,3))/del_t ...];

Position analysis is performed, first, in a for loop with as many iterations as the number of time points as explained
here (for cnt=1:length(t)). An anonymous function corresponding to the system of equations for position analysis,
such as Eqn. 6, must be defined within the for loop. The anonymous function takes one input, which is an array with
the same number of elements as the number of unknowns (six here.) The key to setting up the anonymous function
properly is to represent the unknowns of the problem correctly. For instance, the complex notations of the position
vectors for rotating rigid rods, such as l3 (l3ejθ3 ), and sliders, such as l4 (cejπ ), are as follows.

L(cnt,2)*exp(x(1)*1i)

x(2)*exp(1i*pi)

Here, x is the input variable for the anonymous function whose first and second elements represent the angular posi-
tion of l3 and linear position of l4, respectively. Consequently, the anonymous function corresponding to Equation 6
for position analysis is constructed as shown below.

pos = @(x) [real(L(cnt,1)*exp(theta(cnt,1)*1i)+ ...

L(cnt,2)*exp(x(1)*1i)+ ...

x(2)*exp(theta(cnt,3)*1i));

imag(L(cnt,1)*exp(theta(cnt,1)*1i)+ ...

L(cnt,2)*exp(x(1)*1i)+ ...

x(2)*exp(theta(cnt,3)*1i));

real(L(cnt,4)*exp(x(3)*1i)+ ...

x(4)*exp(theta(cnt,5)*1i)+ ...

(h-x(2))*exp(theta(cnt,8)*1i));

imag(L(cnt,4)*exp(x(3)*1i)+ ...

x(4)*exp(theta(cnt,5)*1i)+ ...

(h-x(2))*exp(theta(cnt,8)*1i));

real(L(cnt,6)*exp(x(5)*1i)+ ...

x(6)*exp(theta(cnt,7)*1i)+ ...

(h-x(2))*exp(theta(cnt,8)*1i));

imag(L(cnt,6)*exp(x(5)*1i)+ ...

x(6)*exp(theta(cnt,7)*1i)+ ...

(h-x(2))*exp(theta(cnt,8)*1i))];

This anonymous function and the initial guess are used as inputs of the fsolve command in MATLAB to compute the
unknowns at every iteration of the for loop. While the initial guess may remain unchanged, updating it with the solu-
tion from the previous iteration helps with a quick convergence of the fsolve command.
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if cnt > 1

pos_ini = sol;

end

sol = fsolve(pos,pos_ini);

Here, sol is an array of six elements storing the solution of the numerical solver. At the end of each iteration, this
variable is used to update the arrays that were defined for angular and linear positions of links.

theta(cnt,2) = sol(1);

L(cnt,3) = sol(2);

L(cnt,8) = h - sol(2);

theta(cnt,4) = sol(3);

L(cnt,5) = sol(4);

theta(cnt,6) = sol(5);

L(cnt,7) = sol(6);

Similar to the position analysis, an anonymous function corresponding to the expanded format of Equation 4 is de-
fined inside a for loop. The angular velocities of rotating rods and linear velocities of the sliders are unknown. All the
position data are calculated in the previous step. The anonymous function for the velocities of the example here is
shown below.

vel = @(x) [real(L(cnt,1)*omega(cnt,1)*exp(theta(cnt,1)*1i)*1i+ ...

L(cnt,2)*x(1)*exp(theta(cnt,2)*1i)*1i+ ...

x(2)*exp(theta(cnt,3)*1i));

imag(L(cnt,1)*omega(cnt,1)*exp(theta(cnt,1)*1i)*1i+ ...

L(cnt,2)*x(1)*exp(theta(cnt,2)*1i)*1i+ ...

x(2)*exp(theta(cnt,3)*1i));

... % Continues like the position vector

Again, updating the initial guess solution at every iteration of the solution to facilitate a quick convergence is reason-
able. The initial guess and the anonymous function are provided as inputs to the fsolve command. The results obtained
from this command are used to update the corresponding elements of the velocity arrays similar to the position analy-
sis.

An anonymous representing the expanded acceleration equations such as Equation 5, shown below, is used inside a for
loop similar to position and velocity analysis to compute all the accelerations in successive iterations.

acl = @(x) [real(-L(cnt,1)*omega(cnt,1)^2*exp(theta(cnt,1)*1i)+ ...

L(cnt,1)*alpha(cnt,1)*exp(theta(cnt,1)*1i)+ ...

L(cnt,2)*x(1)*exp(theta(cnt,2)*1i)*1i- ...

L(cnt,2)*omega(cnt,2)^2*exp(theta(cnt,2)*1i)+ ...

x(2)*exp(theta(cnt,3)*1i));

imag(-L(cnt,1)*omega(cnt,1)^2*exp(theta(cnt,1)*1i)+ ...

L(cnt,1)*alpha(cnt,1)*exp(theta(cnt,1)*1i)+ ...

L(cnt,2)*x(1)*exp(theta(cnt,2)*1i)*1i- ...

L(cnt,2)*omega(cnt,2)^2*exp(theta(cnt,2)*1i)+ ...

x(2)*exp(theta(cnt,3)*1i));

... % Continues like the position vector



American Journal of Undergraduate Research www.ajuronline.org

 Volume 21 | Issue 2 | September 2024  48

The initial guess solution for acceleration is updated in each iteration and is provided as an input for the fsolve func-
tion. The output of this function is used to populate the acceleration arrays similar to the position analysis.

Algorithm for Numerical Solution
A generalized form of the anonymous functions is used to define the vectors of each link. Each link has four attributes.
The first attribute is called “Type” and determines if the link is a rotational rod, slider, etc. The magnitude and angle of
the vector for each link are used to define “Magnitude” and “Angle” attributes of the link. Then, the anonymous func-
tion is attributed to the link, called “Fun”, which depends on the link type. This is demonstrated in the following snip-
pet.

euler = @(R, theta) R*exp(1i*theta);

Vector = @(R, theta) [real(euler(R,theta)); imag(euler(R,theta))];

for l = 1:length(Link)

ang = Link(l).Angle;

mag = Link(l).Magnitude;

if Link(l).Type == 0 % Rigid

Link(l).Fun = @(x) Vector(mag,and);

elseif Link(l).Type == 1 % Rotating Bar

Link(l).Fun = @(x) Vector(mag,x);

elseif Link(l).Type == 2 % Slider

Link(l).Fun = @(x) Vector(x,mag);

else

% reserved for other link types

end

end

In a for loop, the anonymous functions are summed for their real and imaginary parts in separate vector rows, resulting
in a new anonymous function that is compatible with MATLAB’s fsolve function. Like before, the fsolve function is
called repeatedly for each time step, using results from the previous step for initial guesses, as explained in the previous
section. The automatic method of generating the “anonymous function” is shown in the snippet below.

F = @(x) 0;

for l = Order{c}

F = @(x) F(x) + Direction{c}(l) * Link(l).Fun(x(l));

end

Besides being shorter, the primary benefit of this approach is its ability to be generalized. The same code used to solve
the eight-bar of this example linkage would also solve any other 1-DOF multi-bar linkages.

DISCUSSION
The results from the numerical algorithm are verified using the algebraic solution of the relative motion equations for
interconnected rigid bodies and applying the motion constraints at each joint. For instance, in the present example,
vBy = vCx = vDx = 0 and aBy = aCx = aDx = 0. The lengths and angles of the links for the eight-bar linkage shown
in Figure 1 at t = 0 are given in Table 1.

Kinematic analysis of the linkage is performed for 0 ≤ t ≤ 2.35 seconds with an interval of 0.05 seconds. This en-
sures the input link completes at least one cycle. The angular acceleration of the input crank, l2, is zero, and its initial
angular velocity is three rad/s.
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Link Length (m) Angle (rad)
l2 a = 3 θ2 = π/2

l3 b = 5 θ3 = 5.6397

l4 c = 4 θ4 = π

l5 d = 6.15 θ5 = 0.8627

l6 k = 4.6715 θ6 = 3π/2

l7 m = 6.15 θ7 = 5.4205

l8 g = 4.6715 θ8 = π/2

Table 1. Initial values for lengths and angles of the links of the eight-bar linkage.

Angular positions, velocities, and accelerations of links l3, l5, and l7 are shown in Figure 5. An excellent agreement
between the results from the numerical algorithm and the algebraic analytical solution is observed. As expected, the
kinematic parameters of links l5 and l7 are vertically symmetrical.

Figure 6 also shows that the results for displacements, velocities, and accelerations for sliders l6 and l8 agree with those
derived from the analytical solution. Due to the setup of the eight-bar linkage in this example, the profiles of the kine-
matic parameters of these links are also vertically symmetric.

It is observed in Figure 7 that the results for the horizontal slider l4 obtained from the numerical algorithm match
well with the analytical solution. The deviation between the analytical and numerical results shown in Figures 5-7 is
much smaller than 1% for all parameters. The largest difference may occur in reporting zero values, which is caused by
rounding errors in the numerical method showing very small values such as 10−16 instead of absolute zero. Such an
excellent agreement partially stems from choosing appropriate initial guess solutions for the numerical method in each
step of the iterations, as explained earlier.

Figure 5. (Top) Angular positions, (Middle) angular velocities, and (Bottom) angular accelerations of links l3, l5, and l7.
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Figure 6. (Top) Positions, (Middle) velocities, and (Bottom) accelerations of sliders l6, and l8.

Figure 7. (Top) Position, (Middle) velocity, and (Bottom) acceleration of slider l4.
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It must be noted that the goal here is to verify the accuracy of the results from the presented numerical algorithm
when compared with the algebraic solution. The excellent match between the results derived from the two methods
verifies the accuracy of the numerical solution. This algorithm was tested with several other 1-DOF multi-bar linkages
and exact matches were observed between the numerical and algebraic solutions.

CONCLUSIONS
An algorithm was presented for numerical analysis of the kinematics of multi-bar linkages using computer simulations
in MATLAB. The algorithm is based on developing the vector loop equations for the linkages, as in an analytical solu-
tion. The vector loop equations can be generated either manually or by generating a path-finding algorithm. The nu-
merical solution benefits from the capabilities of scientific programming languages, such as MATLAB, to find the roots
of systems of nonlinear and linear equations. It was demonstrated that the presented algorithm can handle links of any
order (binary, ternary, etc.) as well as links whose kinematics are related to that of an adjacent link. The results ob-
tained using the presented algorithm for an eight-bar linkage were in excellent agreement with the analytical solution.

The method presented here can be used in teaching relevant courses such as kinematics or dynamics of machines. The
authors are currently developing a complete stand-alone program with a graphical user interface for kinematic analysis
of mechanisms. The next step is to include force calculations to provide a complete dynamic analysis of any linkage
mainly for educational purposed.

The algorithm can be further improved to capture errors that may occur if the mechanism is physically incapable of
completing a full cycle. For example, if a non-Grashof four-bar linkage is pushed beyond its limits, the solver will pro-
duce an error. Another enhancement to the method is to enable the program to analyze linkages with inverse sliders.
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PRESS SUMMARY
Machines and mechanisms are all around us, from door closers, to can openers, to car engines, to aircraft landing gear,
and so on. These are a tools made up of interconnected links (e.g. rods) that transfer motion and force from one source
and/or form to another point and/or form. For example, the energy stored in the spring component of a door closer is
converted into the kinetic energy that moves the door back to its closing state.

Understanding the behavior of these mechanisms, such as the speed at which their components move, requires a dy-
namic analysis of the interconnected links. Although algebraic methods from classical dynamics can be used for this
purpose, the process becomes tedious as the number of components in the mechanism increases. The increasing num-
ber of links in the mechanisms makes the derivation of specific equations for any given design virtually impossible.
There is a lack of a general solution method for the dynamic analysis of mechanisms of any design that can be used
for education purposes.

Thanks to the advancement of computational technologies, the authors have developed a numerical method that em-
ploys mathematical concepts such as graph theory and complex numbers to perform a complete kinematic analysis of
mechanisms. The proposed method is capable of analyzing mechanisms with several components, and can be taught in
classroom as a means to study the motions of mechanisms for which analytical solutions are challenging.


