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ABSTRACT
AutoRegressive Bandits (ARBs) is a novel model of a sequential decision-making problem as an autoregressive (AR)
process. In this online learning setting, the observed reward follows an autoregressive process, whose action parameters
are unknown to the agent and create an AR dynamic that depends on actions the agent chooses. This study empiri-
cally demonstrates how assigning the extreme values of systemic stability indexes and other reward-governing param-
eters severely impairs the ARBs learning in the respective environment. We show that this algorithm suffers numeri-
cally larger regrets of higher forms under a weakly stable environment and a strictly exponential regret under the un-
stable environment over the considered optimization horizon. We also test ARBs against other bandit baselines in both
weakly stable and unstable systems to investigate the deteriorating effect of dropping systemic stability on their perfor-
mance and demonstrate the potential advantage of choosing other competing algorithms in case of weakened stability.
Finally, we measure the discussed bandit under various assigned values of key input parameters to study how we can
possibly improve this algorithm’s performance under these extreme environmental conditions.
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INTRODUCTION
Multi-Armed Bandits (MABs) 2 is a simplified reinforcement learning problem where an agent must choose among
available actions (arms) to maximize the cumulative reward over time. The goal is to develop strategies that minimize
regret - the difference between the rewards obtained and those that the agent could achieve by always choosing the op-
timal arm. Bacchiocchi et al.1 introduce an AutoRegressive Bandits (ARBs) setting, an extension of traditional MABs
and a novel representation of a particular class of continuous reinforcement learning problems, where the reward is
determined by the autoregressive (AR) process, whose parameters depend on the actions the agent chooses. The AR
process3 is one of the most widely used class of stochastic processes to model temporal dependencies in real-world
phenomena (e.g. stock markets, weather forecasting, etc.).18, 19 Bacchiocchi et al.1 employ an optimistic algorithm for
online-learning, AutoRegressive Upper Confidence Bounds (AR-UCB), designed to pursue the reward maximizing ac-
tion sequence, or optimal policy, within the ARBs setting in an online fashion. The AR-UCB can be used to in dy-
namic e-commerce pricing to model and forecast price changes over time based on historical pricing data, as the AR
models assume that the current price is a linear function of past prices and an error term.22 This algorithm has em-
pirically proven to be advantageous with respect to existing methods in displaying its regret-minimizing abilities when
tested under the same conditions(see the Baselines Comparison section for details). The authors demonstrated that AR-
UCB always suffers the smallest cumulative regret and, unlike its competitors, displays the sublinear behavior, indicat-
ing its dominating efficiency in optimizing the sequence of played actions compared to other methods.
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Standard bandit algorithms typically assume a stationary environment. However, in many real-world applications, the
underlying conditions affecting the reward distribution of the arms may change over time.20 As Granger et al.17 note,
"Many economic and business time series are non-stationary and, therefore, the type of models that we have studied
cannot (directly) be used." This implication spurs the interest in developing bandit algorithms tailored for non-stationary
environments.7, 9 Particularly, in real-world applications of AR processes, unit-root non-stationarity is frequently ob-
served. This type of non-stationarity is characterized by a stochastic trend, where the time series develops indefinitely,
without returning to a fixed mean or trend line.3, 10, 23 Failing to account for unit roots can lead to spurious regressions
and invalid statistical inferences, so it is important to address unit-roots before modeling AR processes.21 However, the
important question is how the unit-root non-stationarity influences the quality of learning the optimal policy within
the ARB setting and whether the AR-UCB can still remain competitive compared to other bandit algorithms under
such conditions.

Existing works mostly focus on addressing non-stationarity in the standard MABs setting, without incorporating auto-
correlations in the processes. For example, Besbes et al.11 propose an algorithm that achieves the optimal regret bound,
which adapts to the degree of non-stationarity in the reward process. The non-stationary bandit problem involves sce-
narios where the environment is dynamic, leading to fluctuations in rewards and potentially altering the optimal strat-
egy over time.8 Komiyama12 propose a new bandit algorithm class named the Adaptive Resetting Bandit (ADR-Bandit)
that can achieve the optimal performance in stationary and non-stationary environments, accounting for its abrupt or
gradual changes, which the author calls "global changes." Furthermore, Liu et al.13 introduce the Predictive Sampling
learning algorithm that can adapt to the degree of non-stationarity in the environment and empirically outperforms
Thompson sampling14 employed in stationary learning. The prevailing consensus highlights the importance of employ-
ing specialized methods for bandit learning problems to attain desired adaptive strategies.

Limited studies have proposed more specialized algorithms that can help the ARBs adapt to changes in their learning
environments. Trella et al.9 introduce a new formulation in the context of the non-stationary latent AR bandits,15, 16

where the reward distributions of the arms follow a latent AR process with a changing according to this AR dynam-
ics state over time. The authors propose an efficient AR OFUL algorithm, a modified version of OFUL algorithm de-
signed for stochastic linear bandits,5 that is capable of effectively handling changes in non-stationarity. Nonetheless, the
algorithmic approach in this paper addresses the unknown nature of the latent process, which fails to encompass the
setting addressed by Bacchiocchi et al.,1 where the information about the AR process is available for the agent. The
scarcity of existing literature studying the behavior of AR bandits under extreme environmental conditions has sparked
the initiation of the presented study.

The goal of this paper is to investigate the AR-UCB behavior under various degrees of systemic stability, an employed
measure10 for the degree of stationarity of the autoregressive processes, in terms of generated average cumulative re-
grets to determine the effect of changing these environmental conditions on the algorithm’s performance. We analyze
the algorithm in three near-unstable, or with an extremely weakened stability that closely replicates the unit-root non-
stationarity, and one strictly unstable environment and compare it to results presented in Bacchiocchi et al.1 containing
the original stability indexes. We also test AR-UCB with other baselines from the literature4–7 in each introduced envi-
ronment. Importantly, we empirically demonstrate that near-unstable environment drastically worsen and the unstable
environment paralyzes the learning process for AR-UCB and other introduced bandits. Lastly, we will empirically eval-
uate the AR-UCB under selected values of reward-governing parameters, such as Ridge regularization parameter and the
boundedness value, whose meaning we discuss along the paper, to illustrate that the algorithm minimizes the generated
cumulative regret and improves the learning process for the smallest values of these controlled parameters.
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THE AUTOREGRESSIVE BANDITS
Setting
The AutoRegressive Bandits setting1 considers the sequential interactions between the learner and the environment. It
conditions the reward evolution according to the autoregressive (AR) process of the order k (AR(k)).3 Thus, at every
round t, the learner chooses an action at ∈ A = �n� (we define �a, b� = {a, ..., b} and �b� = {1, ..., b} for any a ≤ b ∈
N) among the n ∈ N available ones and observes the reward xt of the form described in Equation 1.

xt = γ0(at) + Σki=1γi(at)xt−i + ξt Equation 1.

We define the reward space as xt ∈ X ⊆ R, the unknown parameters depending on an action a as γ0(at) ∈ R and
(γi(at))i∈�k� ∈ R

k, and the zero-mean σ2-subgaussian random noise conditioned to the past as ξt. We can also express
the reward evolution in the inner product form 〈x,y〉=xTy=Σni=1xiyi, where x,y ∈ R

n are any finite real-valued
vectors, as shown in Equation 2.

xt = 〈γ(at), zt−1〉+ ξt Equation 2.

In this equation, we have zt−1 = (1, xt−1, ..., xt−k)T ∈ Z = {1} × X k - the context vector expressing the past history of
reward observations, and γ(a) = (γ0(a), ..., γk(a))

T ∈ R
k+1 - the parameter vector for every a ∈ A.

Every γi(at) parameter fulfills three following assumptions1 labeled in order: Assumption 1 (Non-negativity) requires
that the coefficients of are non-negative (i.e. γi(a) ≥ 0 for every i ∈ �0, k�) for producing realistic results in observing
the real-world phenomena. Assumption 2 (Stability) establishes that the sum of action parameters Σki=1γi(a) is limited
to a stability coefficient value Γ ∈ [0, 1). Assumption 3 (Boundedness) enforces the boundedness to γ0(a) with a finite
value m = maxa∈A γ0(a).

Assumption 2 and 3 guarantee the inability of the underlying autoregressive processes to diverge in expectation for any
action sequence played by the agent.1 On the other hand, the near-unstable environments with Γ � 1 and/or large
values of m aggravate the learning process within the ARB setting, requiring more time for the agent to develop the
optimal policy. Finally, the unstable environment Γ = 1 completely eliminates the systemic stability, in which case
the learner is unable to choose the most optimal action sequence to maximize its results regardless of values of other
presented parameters. In this work, we show the importance of employing these two assumptions in the learning pro-
cess by empirically demonstrating that the AR-UCB suffers numerically larger regrets due to losses in learning abilities
occurring in the environments, where either of these two assumptions (or both) are relaxed.

Policy and Performance
Since our studies concern the empirical analysis of the achieved regret, we provide the formal regret definition. The
policy π models the learner’s behavior and the regret R imposes the loss of not choosing an optimal action on a lear-
ner. The deterministic learner’s policy π=(πt)t∈N, defined for each round t ∈ �T � as the mapping function from the
history of observations Ht−1 = (x0, a1, x1, ..., at−1, xt−1) to the action space A, demonstrating that at = πt(Ht−1).

The policy performance is evaluated through the expected cumulative reward JT (π) = E[ΣTt−1xt] over the horizon
T ∈ N with respect to the random reward noise ξt. The learner objective is to minimize the expected cumulative regret
R(π, T ) by playing a policy π against the optimal policy π∗ satisfying π∗(Ht−1) = argmaxa∈A〈γ(a), zt−1〉1 (from As-
sumption 1) over a learning horizon T ∈ N, where where rt = x∗t − xt is the instantaneous policy regret and (x∗t )t∈�t∈N�

is the sequence of rewards from playing π∗ from Equation 3.
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R(π, T ) = J∗T − JT (π) = E[ΣTt=1rt] Equation 3.

We find that the presence of weak systemic stability impedes the agent in completing the regret minimization objective.
Specifically, we demonstrate the positive trend between dropping the robustness of systemic stability and the number of
rounds required to develop the optimal policy under these aggravating conditions.

The AR-UCB

For the ARB setting, we devise AR-UCB that suffers sublinear regret1 of order O
(

(m+σ)(k+1)3/2
√
nT

(1−Γ)2

)
, where T is the

exploration horizon, n is number of actions, m and σ are the max γ0(a) and noise values, respectively, and Γ is the in-
dex of systemic stability. This formula suggests that higher autoregressive orders k, larger values m and stability indexes
Γ increase the complexity of learning for this algorithm. Thus relaxing Assumption 2 and Assumption 3 exasperate
the learning process by allowing higher values for m and Γ parameters.

At each round t ∈ �T �, the AR-UCB algorithm computes the Upper Confidence Bound for every a ∈ A to play this
action and observe the reward xt as in Equation 2. The formal computation is defined as follows in the Equation 4.

at ∈ argmax
a∈A

UCBt(a) := 〈γ̂t−1(a), zt−1〉+ βt−1(a)||zt−1||V t(a) Equation 4.

The AR-UCB computes γ̂t(a) = V t(a)
−1bt(a), where it consistently updates the required Gram matrix V t(a) and

the vector bt(a) (V 0(a) = λIk+1 and b0(a) = 0k+1 at t = 0), as V t(a) = V t−1(a) + zt−1z
T
t−11{a=at} and bt(a) =

bt−1(a)+zt−1xt1{a=at} for every a ∈ A after observing the reward xt. In this equation, we also define the exploration
coefficient βt−1(a) ≥ 0 for every action a ∈ A and round t ∈ �0, T − 1� as it follows in Equation 5.

βt(a) =
√
λ(m2 + 1) + σ

√
2 log(

n

δ
) + log(

detV t(a)

λk+1
) Equation 5.

The first term in this equation is the bias term and the second one is the concentration term.1 From this form of βt(a),
it follows that smaller input values of λ and m reduce the bias term in computing βt(a). This way the algorithm more
precisely estimates the action played, which helps achieve lower instantaneous regret rt from playing the computed ac-
tion at, while larger values of these parameters make the AR-UCB produce more biased calculations of at. However,
because there is a trade-off between two terms of this equation with respect to λ, the value of βt(a) may evolve differ-
ently for smaller m under the same λ.

In practice, the actual value of m is unknown, so we may replace this value with a user-specified upper bound m̄ to
compute βt(a) in Equation 5. For example, in the simulation on the AR-UCB performance under different parameters
λ, we allow m̄ to differ from the actual value m. We will demonstrate that the AR-UCB suffers smaller regrets with
m = 20 and m̄ = 100 as values of λ decrease to 0. However, the relationship between the regret and λ behaves quite
differently under m = m̄ = 1. Moreover, we conduct another experiment to investigate the effect of m on the regret
evolution when λ is fixed, and to avoid the ambiguity due to possible misspecification, we simply set m̄ = m.

SIMULATION DESIGN
In our experiments, we measure the AR-UCB and other baselines performance in terms of average cumulative regret
over the optimization horizon T = 10000 rounds in a range of provided settings distinguished by the assigned systemic
stability or the algorithm’s key parameters. We evaluate all the experiments within three specific near-unstable envi-
ronments, each carrying Γ ∈ {0.95, 0.98, 0.999} stability indexes, and the unstable environment with a stability index
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Γ = 1. We run a range of Python simulations, where each complies to the values in every respective setting, and pro-
vide the graphs of cumulative regrets achieved by the AR-UCB on alone or other introduced bandit baselines in each of
discussed settings. All the algorithms are implemented in Python 3.12, and run over an Apple M1 with 8 GB RAM.

AR-UCB Performance
We first observe and analyze the AR-UCB cumulative regret on alone under systemic near-instability and instability.
We consider three experimental settings containing autoregressive orders k ∈ {2, 4}, number of actions n ∈ {2, 7},
actual values m ∈ {1, 20, 920}, and noise parameters σ = {0.75, 1.5, 10}, respectively. We also compare our results to
cumulative regret plots for every bandit generated under the original systemic stability indexes Γorig = {0.5, 0.7, 0.82}
using the same parameters to visually demonstrate the impact of weak stability on the AR-UCB performance. To spec-
ify the details of the learning process, we select hyper-parameters λ = 1, a Ridge regularization parameter value, and
boundaries m̄ = {10, 100, 1000} for the equivalent magnitudes of corresponding values of m (i.e. every m̄ is sequen-
tially selected for each m). Table 1 summarizes the settings details.

Setting
Parameters

Γorig k n m σ

A 0.5 2 2 1 0.75
B 0.82 4 7 20 1.5
C 0.7 4 7 920 10

Table 1. Settings description.

Baselines Comparison
We test and compare AR-UCB performance in near-unstable and unstable environments against the following selected
baselines: UCB1, EXP3, B-EXP3, and AR2. UCB14 is a widely-adapted solution for stochastic MABs. EXP36 is an al-
gorithm designed for adversarial MABs and its extension to finite-memory adaptive adversaries B-EXP3.5 AR27 is an
algorithm that operates within a non-stationary MAB framework with an autoregressive reward structure of the first
order (AR(1)). For this experiment, we utilize the same parameters as in the study on AR-UCB Performance. We also
compare our results to cumulative regret plots for every bandit generated by Bacchiocchi et al.1 under the original sys-
temic stability indexes Γorig = {0.5, 0.7, 0.82} using the same parameters to visually demonstrate the gravity of the
impact of weak stability on the baselines performance. However, since we experiment on several baselines altogether,
we display our results in three settings consisting of five graphs, where each corresponds to a stability index from Γorig
to Γ = 1. Table 1 precisely summarizes the parameters utilized in each setting.

On the AR-UCB Performance Under Different Parameters λ
We experimentally measure the AR-UCB performance under different regularization parameters λ. For our experi-
ments on λ, we test this algorithm for selected λ ∈ {0.001, 0.01, 0.05, 0.2, 0.6, 1.2, 1.6, 3, 5} against its performance
for the originally utilized by Bacchiocchi et al.1 choice λ = 1. We first employ n = 7, k = 4, m = 20, and σ = 1.5

in every near-unstable and unstable setting (Figure 3). Then we repeat this experiment with m = 1 (Figure 4) to an-
alyze trade-off between the bias and concentration terms from Equation 5 with respect to λ. We also select m̄ = 1 and
m̄ = 100 as our hyper-parameter for m = 1 and m = 20, respectively. The goal of this experiment is to analyze how
each assigned λ impacts the AR-UCB regret evolution with respect to its original value, and what regularization value
helps the algorithm minimize it.

On the AR-UCB Performance Under Different Parametersm
We test the AR-UCB under several values of m. For our experiments on m, we consider an array of values
m ∈ {0, 0.25, 0.5, 1, 10, 100, 500, 1000}. We utilize n = 7, k = 4, σ = 1.5, and λ = 1 in every near-unstable and
unstable setting. To avoid the misspecification1 of presented boundary parameters, each m̄ = m for every action a ∈
A for its respective scenario (Ex. m̄ = 10 if m = 10), since we do not investigate in this study how the erroneous
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estimation of the boundary influences the algorithm’s performance. We only aim to establish the general relationship
between the m value and the achieved AR-UCB cumulative regret in the learning process.

RESULTS
AR-UCB Performance
Figures 1 shows the average cumulative regrets for AR-UCB under different stability indexes. We may observe that
the AR-UCB regret rapidly degenerates from the sublinear to higher forms under Γ ∈ {0.95, 0.98, 0.999} in every re-
spective scenario. Thus, under falling stability, the AR-UCB requires drastically more time to learn the optimal action
sequence for adapting to its environment. This notion is especially highlighted under Γ = 0.999 in every experiment,
where the AR-UCB achieves the exponential regret in the first stages of the simulations under the Γ = 0.999 stability
index. This way we observe that the extremely low systemic stability makes the algorithm temporarily lose the learn-
ing ability within the limited exploration.
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Figure 1. Cumulative regret of AR-UCB across stable, near-unstable, and unstable environments.
The AR-UCB performance under Γ = 1 is fundamentally different. First, we immediately observe the cumulative regret
to be exponentially increasing in every introduced experiment. This indicates that AR-UCB completely loses its ability
to acquire information in the unstable environment, making less optimal choices at every round over the learning hori-
zon T . We may similarly observe precisely the same AR-UCB behavior under Γ = 0.999 at earlier stimulation stages,
since this index value closely recreates this effect of the systemic instability on learning. However, it is still possible
for the algorithm to achieve the optimal policy even under the infinitely close to 1 value of Γ over a large number of
rounds, which is especially seen in a Setting B, whereas the unstable environment completely annihilates this possibility
by paralyzing the learning process.

The above experiments highlight the importance of employing Assumption 2 in the learning process. This assumption
ensures the efficiency of learning for the algorithm by creating a stable environment s.t. Γ is far within the radius of 1.
We observe that weakening this assumption with any Γ � 1 consequently weakens the algorithm’s ability to process the
information from its setting and develop the optimal action sequence that reduces regrets to a sublinear form. This way
the more Γ approaches 1, the more this index complicates the ongoing learning for the algorithm. Finally, the unstable
Γ = 1 completely abolishes the learning, so that the algorithm plays sub-optimal actions at all rounds.

Baselines Comparison
Figures 2 illustrates the average cumulative regret of all tested baselines for Γ ∈ {0.95, 0.98, 0.999} in three settings.
The cumulative regret achieved by many tested bandit baselines progressively degenerates to higher forms with increas-
ing values of Γ. Every bandit suffers precisely the same numerical regret, except for a particular case depicted in the
Setting B in scenario with Γ = 0.999, where UCB1 significantly outperforms every other baseline under this stability
index. We also see that every baseline achieves the exponential regret under Γ = 0.999 in every experiment during the
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first stages of simulations, which occurs due to the limited exploration. Amongst all the baselines, AR-UCB demon-
strates near-identical performance compared to UCB1 in every experiment in all near-unstable scenarios, except for the
Setting B under Γ = 0.999. On the other hand, AR2 is able to significantly outperform AR-UCB and other bandits in
the experiment in the Setting C, although their achieved regrets converge in value across every scenario as the stability
weakens. Both EXP3 and B-EXP3 suffer near-identical regret in every presented experiment with near-unstable indexes,
achieving the largest cumulative regrets with respect to other baselines.
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Figure 2. Comparison of cumulative regret for different baselines across stable, near-unstable, and unstable environments.
Unlike in case of near-instability, every experimented baseline displays strictly exponential behavior within the unstable
environments in every presented scenario. We may observe that baselines suffer close-in-value exponential cumulative
regret in every experiment, except for the one in the Setting B, in which UCB1 achieves the lowest regret out of all the
bandits, showcasing its least sensibility to the systemic stability. Nonetheless, the AR-UCB again replicates UCB1 in
terms of their regret in unstable scenarios in other two experiments (A and C). Meanwhile, the unstable environment
significantly suppressed the AR2 performance, making this baseline to suffer the largest regret in every experiment.
Both EXP3 and B-EXP3 again achieve a closely similar exponentially growing cumulative regret under the instability
in all presented experiments.

These experiments illustrate the dependence of introduced bandits on the robustness of the systemic stability condi-
tioned by Assumption 2. We demonstrated that every baseline develops the same regret behavior depending on the
introduced value of a stability index Γ in the respective environment. Thus we showed that all the baselines equiva-
lently lose their learning ability and require more additional time to optimize their action policy under near-unstable
Γ � 1 values, where . Finally, the unstable index Γ = 1 disables learning processes for every baseline, making them
inefficiently operate within such an environment regardless of other selected parameters.
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On the AR-UCB Performance Under Different Parameters λ
Figures 3 and 4 show the average cumulative regret in the near-unstable and unstable environments for each considered
λ under m = 20 and m = 1. We immediately observe that the AR-UCB achieves the best performance under the
smallest λ = 0.0001 for all settings with m = 20, whereas the optimal choice of λ in experiments with m = 1 varies
depending on the stability coefficient: λ = 0.2 when Γ = {0.95, 0.98}, λ = 0.01 when Γ = 0.999, and λ = 1 when
Γ = 1. In Figure 3, we see that the algorithm achieves significantly smaller regrets with choices λ < 1 with respect
to other selections. However, the regrets in Figure 4 are more clustered, indicating their lesser sensitivity to the choice
of λ when m is smaller. We also observe that the AR-UCB enjoys sublinear regret in settings with Γ ≤ 0.98 across all
choices of λ. Meanwhile, the severely weakened stability under Γ = 0.999 conditions the exponential regret evolution
at some initial rounds under every λ. Still the algorithm is able to quickly reduce the regret to lower forms over more
rounds, especially for optimal choices of λ. It’s also worth noting that the AR-UCB can achieve smaller regret in the
same fashion across selected λ under Γ = 1. Nonetheless, because the systemic instability completely disables learning
processes, the algorithm does not achieve the sublinear regret in this setting regardless of other parameters.
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Figure 3. Effect of the choice of λ on the AR-UCB cumulative regret in near-unstable and the unstable environments (m = 20).
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Figure 4. Effect of the choice of λ on the AR-UCB cumulative regret in near-unstable and the unstable environments (m = 1).

The experiments on the manipulation of the Ridge regularization parameter λ empirically illustrates the role of βt(a)
components from Equation 5 in the AR-UCB learning process. We can explain the different findings from Figures 3
and 4 can be explained via the formula for this coefficient. According to this equation, the bias term increases with λ,
while the concentration term decreases with this parameter. When m is large (ex. m = 20), the bias will dominate
the concentrtion term even for extremely small λ choices. Consequently, in Figure 3, the smallest λ = 0.0001 is the
most optimal across all the experiment. On the other hand, when m is relatively small, the bias term does not neces-
sarily dominate the concentration term, and then the optimal choice of λ will depend on the trade-off between the two
terms. As a result, in Figure 4, the cumulative regret is not monotonic in λ, and the specific optimal choice of lambda
depends on the stability parameter.

On the AR-UCB Performance Under Different Parametersm
Figures 5 shows the average cumulative regrets of AR-UCB under different values m. The AR-UCB achieves the mini-
mal regret under every m = 0, with a progressive increase as values m get larger across all four experiments. Across all
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the experiments, the regrets under m ∈ [0, 1] are more clustered, while the regret values under m > 1 are drastically
different. Also, in scenarios with Γ ∈ {0.95, 0.98}, m ∈ [0, 1] condition sublinear regret evolution over the entire learn-
ing interval, while any m > 1 reduces regrets to linear, allowing the sublinear behavior only during the initial stages
of simulations. In the scenario with Γ = 0.999, the AR-UCB seems to exhibit the exponential regret due to severely
weakened stability, especially when m is large. Meanwhile, the AR-UCB displays strictly exponential average cumula-
tive regrets for every m within the Γ = 1 environment. Due to systemic instability, the algorithm will never achieve
the optimal policy and continue to suffer this regret regardless of the provided values of m. Thus AR-UCB is only able
to minimize the achieved regret with the lowest value of m, as any value m > 0 only leads to larger regrets.
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Figure 5. Cumulative regret for AR-UCB in the stable vs. near-unstable and the unstable environments.
These experiments illustrate that larger values of m substantially increase the AR-UCB regrets, while the value m = 0

helps produce the smallest regret across our experimental scenarios. However, in the presence of severely weakened sta-
bility (i.e Γ = 0.999), the algorithm under higher values of m can sooner optimize its performance in a trade-off with
the size of the regret. Thus we empirically demonstrate that relaxing Assumption 3 with introducing very high values
of m within the weak (or eliminated) systemic stability further reduces the algorithm’s performance by enlarging the
bias in calculating βt(a) for each action, as shown in Equation 5.

CONCLUSION AND DISCUSSION
In this research, we experimentally tested the AR-UCB and other bandit baselines’ behavior under varying degrees of
systemic near-instability Γ ∈ {0.95, 0.98, 0.999} and under a definite degree of systemic instability Γ = 1. First, we
measured the AR-UCB performance under the near-instability and instability on alone against its stable performance,
demonstrating the differences in the regret evolution within the presented settings. We then repeated our measures un-
der the same selected near-unstable and unstable settings on several other baselines introduced in the original paper. We
observed that the presented algorithm achieve precisely the same regret evolution as the AR-UCB and highlighted the
performative advantages of some baselines relative to the original one under specific values of systemic near-instability
and instability. Finally, we provided a series of experimental measures of AR-UCB under different Ridge regularization
parameters λ and values of m to empirically analyze the improvements in the AR-UCB performance by finding the op-
timal values for these parameters.

Our work highlights the need for a more robust alternative to the AR-UCB algorithm capable of adapting to poten-
tially unstable environments, such as those characterized by (near) unit-root autoregressive processes. Additionally,
while our research primarily focuses on numerical investigation, it would be valuable to theoretically analyze the phase
transition behavior of the AR-UCB algorithm across stable and unstable regimes. This analysis would provide insights
into its capabilities and limitations. Furthermore, it is interesting to extend our study to dynamic linear bandits24,
which assumes an environment evolving according to a stable linear dynamic system. Investigating how the possible
violation of stability, characterized by the unit-rootness of the transition matrix, impacts the algorithm’s performance
remains an open question that warrants further exploration.
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PRESS SUMMARY
AutoRegressive Upper Confidence Bound (AR-UCB) is a recently proposed online learning algorithm that has been
shown to outperform other bandit algorithms in stable autoregressive environments. However, when the environment
is weakly stable or unstable, our work reveals that AR-UCB loses its learning ability and may perform worse than
other benchmark algorithms. This study highlights the critical dependence of AR-UCB on environmental stability,
with important implications for its proper implementation in various real-world domains.


