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ABSTRACT
Block bootstrap is widely used in constructing confidence intervals for parameters estimated from stationary time se-
ries. Theoretically, the method should provide valid confidence intervals as the length of the time series goes to infinity.
In practice, however, it is necessary to know how large of a finite sample is required for block bootstrap confidence
intervals to work well. This study aims to answer this question in a simple simulation setting where the data are gen-
erated from a first-order autoregressive process. The empirical coverage rates of several commonly used bootstrap con-
fidence intervals for the mean, standard deviation, and the lag-1 autocorrelation coefficient are compared. A quite large
sample is found necessary for the intervals to have the right coverage rates even when estimating a simple parameter
like the mean. Some block bootstrap methods could fail when estimating the lag-1 autocorrelation. It is surprising that
the coverage property even deteriorates as the sample size increases with some commonly used block bootstrap confi-
dence intervals including the percentile intervals and bias-corrected intervals.
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INTRODUCTION
Block bootstrap is a tool to construct confidence intervals (CI) to make inferences about dependent data. Essentially, it
depends on correct estimation of the uncertainty in the estimation, similar to the standard bootstrap1, but for serially
dependent data. Early ideas of block bootstrap were developed not long after the standard bootstrap.2–4 It has since
been applied in various fields, for instance, econometrics and meteorology.5, 6 Block bootstrap is especially useful for
serially dependent data when the serial dependence is not specified or not of primary interest. The method is expected
to produce CIs with coverage rates matching their nominal levels as the sample size grows.7 However, when dealing
with finite sample sizes, an important question is how large the sample size must be for block bootstrap CIs to have
the desired coverage rates.

Lahiri 8 finds that moving block bootstrap has better performance than non-overlapping block bootstrap. Additionally,
moving block bootstrap with nonrandom block sizes results in lower mean-squared errors than moving block bootstrap
with random block sizes. Buhlmann and Künsch 9 notes that a drawback of block bootstrap is that it heavily depends
on block size, which has to be chosen by the user of the method. Even when using the appropriate settings, as noted
by Buhlmann 10 observes some general drawbacks of block bootstrap — with respect to how reasonably it imitates the
data-generating process. In addition, although block bootstrap is primarily used for stationary time series, it can be out-
performed by other bootstrap schemes for linear time series and categorical processes. Still, Buhlmann 10 emphasizes
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that a significant advantage of block bootstrap is its simplicity. To be more specific, the resampling step of block boot-
strap is not computationally more difficult than the resampling step of basic bootstrap. Furthermore, block bootstrap
performs better than local bootstrap in terms of mimicking dependence structures.

For independent data, extensive research has explored the effectiveness of bootstrap standard errors in providing accu-
rate uncertainty measures. For example, Hesterberg 11 observes that while percentile-based CIs for the mean parameter
are more accurate than t-intervals for larger sample sizes, their accuracy diminishes for smaller sample sizes. The op-
timal parameter estimation of a distribution, according to Chernick and Labudde 12 , depends on the sample size, the
number of bootstrap replicates, and the confidence level. In structural equation modeling, Nevitt and Hancock 13 find
that a sample size of 200–1000 is sufficient for interval estimation using standard nonparametric bootstrap. In estimat-
ing variance components, Burch 14 reports that as the sample size increases under a normal distribution, nonparametric
bootstrap methods approach the coverage of a pivotal quantity, but for other distributions, the coverage can deteriorate.
In estimating the correlation coefficient of bivariate normal data, Puth et al. 15 note that even for a sample size of 100
with true correlation coefficient 0, bootstrap methods are less accurate than the Fisher’s transformation. The prevailing
consensus highlights the necessity of a substantial sample size for bootstrap CIs to attain the desired coverage.

Limited research has offered practical guidance concerning the requisite sample size for employing block bootstrap in-
ference with dependent data. In the context of linear regression involving dependent data, where regression errors stem
from a homoscedastic autoregressive process of order-1, the investigation conducted by Goncalves and White 16 reveals
that, in cases of small sample sizes, standard error estimates derived from the moving block bootstrap approach may
demonstrate greater accuracy than those based on closed-form asymptotic estimates. Nonetheless, even when consider-
ing a substantial sample size of 1024, confidence intervals generated through the moving block bootstrap method still
fail to adequately encompass the target parameter. The scarcity of existing literature addressing the necessary sample
sizes conducive to the efficacy of block bootstrap techniques has spurred the initiation of the present study.

The goal of this paper is to provide recommendations on necessary sample size for block bootstrap with dependent
data, similar to what was done for basic bootstrap in Hesterberg 11 . We consider a simple situation of a stationary time
series, where the parameters of interests are the mean, standard deviation, and the first-order autocorrelation coefficient.
We compare six variants of block bootstrap CIs from the literature:17, 18 a standard normal CI, a Student’s t CI, a per-
centile CI, a bias-corrected CI, a bias-corrected and accelerated CI, and a recentered percentile CI proposed in this arti-
cle. Their empirical coverage rates at different sample sizes and dependence levels are compared in a simulation study.
The results of this study suggest that recovery of temporal dependence parameters is reliant on the type of interval
used.

The remainder of the paper is organized as follows. The first section reviews block bootstrap procedures and how to
use block bootstrap estimates to construct CIs; a simple CI obtained by recentering at the original point estimate is
proposed for comparison. The second section reports a simulation study comparing the coverage rates of six block
bootstrap CIs. A discussion concludes in the final section.

BLOCK BOOTSTRAP CIS
Consider a stationary time series {Xt : t = 1, . . . , n} with length n. Our goal is to construct a CI for a parameter θ
in the data generating model of the series. Suppose that θ̂n is a point estimator of θ based on the observed series. Boot-
strap is a powerful approach to construct CIs. If the observations in the series were independent, a standard nonpara-
metric bootstrap procedure would draw a large number B bootstrap copies of the observed data, and calculate a boot-
strap point estimate θ̂(b)n for each copy b = 1, . . . , B. The uncertainty of θ̂n is then estimated by the empirical uncer-
tainty of the bootstrap point estimates. When serial dependence is present, the bootstrap procedure needs to preserve
the serial dependence. Block bootstrap was motivated for this situation.
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Block Bootstrap
Block bootstrap preserves the serial dependence in the observed data by partitioning the data into blocks and perform-
ing bootstrap on the blocks. In particular, consider block size l and, for convenience, suppose that n is a multiple of l
such that there are k = n/l blocks. Each block j is Yj = {X(j−1)l+1, . . . , X(j−1)l+l}, j = 1, . . . , k. Then, we sample
k blocks of Yj ’s from the set {Y1, . . . , Yk} with replacement and concatenate the k sampled blocks in the order they
are picked to form a bootstrap sample of the data. The formation of the bootstrap sample ensures that the between-
block dependence is weak and that the within-block serial dependence is preserved. Because the blocks here are non-
overlapping, this bootstrap approach is known as non-overlapping block bootstrap, or simple block bootstrap.

Alternatively, block-bootstrap can be done with overlapping or moving blocks. Define moving blocks

Zj = {Xj , . . . , Xj+l−1}, j = 1, . . . , n− l + 1.

Now we draw k blocks from the (n − l + 1) blocks of Zj ’s with replacement and then align them in the order they
were picked to form a block bootstrap sample. If n is not a multiple of l, the last block selected will be reduced in size
so that the final size of the block bootstrap sample is n. It is also possible to implement moving block bootstrap while
allowing blocks to wrap around the end of the series. In other words, define moving blocks (assuming l > 1) as:

Zj =

{
{Xj , . . . , Xj+l−1}, if j = 1, . . . , n− l + 1,

{Xj , . . . , Xn, X1, . . . , Xj−n+l−1}, if j = n− l + 2, . . . , n.

This version does not require that n/l be an integer.

The block size l needs to be chosen with care. It should be large enough for each bootstrap sample to preserve the se-
rial dependence, yet small enough for there to be a large number of blocks to give sufficient variability between each
bootstrap sample. As n increases, both l and n/l should also increase. To achieve this, the order of l is often assigned
a value as a function of n. A common expression that is considered optimal for the order of l is �n1/3�,9 which was
adopted in this study.

Block Bootstrap CIs
Suppose that we have repeated the steps in the last subsection B times, and that for b ∈ {1, . . . , B}, we have obtained
a bootstrap point estimate θ̂(b)n based on the bth bootstrap sample using the same method that was applied to {Xt :

t = 1, . . . , n} to obtain θ̂n. Now the question is how to construct a CI for θ using the B bootstrap point estimates
{θ̂(1)n , . . . , θ̂

(B)
n }. We consider six kinds of block bootstrap CIs adapted from standard bootstrap CIs.

Standard Normal CI Assuming that θ̂n is asymptotically normally distributed with θ as the mean, we just need an
estimate of the standard error to construct an approximate CI.19 Let ŜE be the empirical standard error of the boot-
strap point estimates θ̂(b)n for b ∈ {1, . . . , B}. Let z(α) be the quantile function F−1(α) of the standard normal distribu-
tion. A (1− α)100% standard normal CI is

(θ̂n − z(1−α/2)ŜE, θ̂n − z(α/2)ŜE).

This CI is centered by the original point estimate θ̂n and is symmetric. The standard CI is classified by Efron and Tib-
shirani 19 as a confidence interval based on bootstrap “tables", which essentially means it is based on an asymptotic dis-
tribution with an estimated asymptotic variance (standard error). Its validity relies on whether the distribution of θ̂n
is reasonably well approximated by its asymptotic normal distribution and whether the bootstrap ŜE approximates the
true standard error.
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Student’s t CI The procedure for constructing a Student’s t CI based on standard bootstrap is described in Efron and
Tibshirani 19 . Let t(α,k) be the quantile function F−1(α, k) of a t distribution with k degrees of freedom. With block
bootstrapping, a (1− α)100% Student’s t CI is

(θ̂n − t(1−α/2),k−1ŜE, θ̂n − t(α/2),k−1ŜE),

where k is the number of blocks. This CI is centered by the original point estimate θ̂n and is symmetric. Like the stan-
dard normal interval, the Student’s t CI is classified by Efron and Tibshirani 19 as a confidence interval based on boot-
strap “tables". In this case, its validity relies on whether the distribution of θ̂n is reasonably well approximated by the
tk−1 distribution with an expected value of θ and whether the bootstrap ŜE approximates the true standard error.

Percentile CI The percentile CI was first suggested in Efron 1 . Let θ̂Bn,α be the empirical 100αth percentile of {θ̂(1)n , . . . , θ̂
(B
n

A (1− α)100% empirical percentile CI is
(θ̂Bn,α/2, θ̂Bn,1−α/2).

This CI is not necessarily centered by the original point estimate θ̂n. As will be shown in our simulation study, this
approach works well for the marginal mean and standard deviation of a serially dependent process, but its coverage of
the temporal dependence deteriorates as n increases, which is contrary to what one would expect.

Bias-Corrected (BC) CI The procedure for constructing a bias-corrected Bootstrap CI based on standard bootstrap is
described in Carpenter and Bithell 20 . Let ẑ0 = Φ−1{#{θ̂(b)n < θ̂n}/B} for b ∈ {1, . . . , B}. Define α1 = Φ(2ẑ0 −
z1−α/2) and α2 = Φ(2ẑ0 − zα/2). A (1− α)100% BC CI is

(θ̂Bn,α1
, θ̂Bn,α2

).

Bias-Corrected and Accelerated (BCA) CI The BCA CI was first suggested in Efron 21 . Let Z(i) be the original sam-
ple without the ith block zi for i ∈ {1, . . . , k}, let θ̂(i) be the statistic of Z(i), and let θ̂(.) = k−1

∑k
i=1 θ̂(i). Let

â =

∑k
i=1(θ̂(.) − θ̂(i))

3

6{∑k
i=1(θ̂(.) − θ̂(i))2}3/2

.

Define
α1 = Φ

(
ẑ0 +

ẑ0 + zα/2

1− â(ẑ0 + zα/2)

)
and

α2 = Φ

(
ẑ0 +

ẑ0 + z1−α/2

1− â(ẑ0 + z1−α/2)

)
.

A (1− α)100% BCA CI is
(θ̂Bn,α1

, θ̂Bn,α2
).

This CI is not necessarily centered by θ̂n. The BCA method corrects for bias and skewness of the B bootstrap point
estimates {θ̂(1)n , . . . , θ̂

(B)
n } by including bias-correction and acceleration factors. The acceleration factor refers to the rate

of change of the standard error of θ̂n with respect to θ.
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Recentered Percentile CI We propose a CI that is centered at the original point estimate and uses the variation in
the bootstrap estimates to construct the error bound. The motivation behind proposing such an interval was based on
the simulation performance of the BC and BCA intervals, which will be discussed further in the Results section. This
interval requires the computation of θ̄Bn = n−1

∑B
b=1 θ̂

(b)
n , the mean of all bootstrap point estimates. A (1− α)100% CI

is centered around θ̂n and can be written as

(θ̂n + θ̂Bn,α/2 − θ̄Bn , θ̂n + θ̂Bn,1−α/2 − θ̄Bn ).

It is not necessarily symmetric, as different critical values are used to compute the lower and upper bounds. It has the
same width as the percentile CI.

SIMULATION DESIGN
We compared the performance of the different block bootstrap CI methods under two marginal distributions: standard
normal and unit exponential.

Marginal Standard Normal Distribution
We generated time series Xt from a 1st order autoregressive (AR(1)) process:

Xt = φXt−1 + εt,

where φ is an autoregressive coefficient, and εt is a series of independent errors from a normal distribution with mean
zero and variance σ2

ε . The strength of the serial dependence is controlled by φ, which was set to five levels: {−0.4,−0.2,

0.0, 0.2, 0.4}. We only used serial dependences as strong as 0.4, because we only seek to establish the general trend as
the strength of the autocorrelation increases, and how it varies depending on the sign of the autocorrelation and the
parameter of interest. The series Xt has mean zero and variance σ2

x = σ2
ε /(1 − φ2), so for each value of φ, we set

σ2
ε = (1− φ2) such that σ2

x = 1.

Three target parameters of Xt were considered: 1) μ = 0, the mean of Xt; 2) σx = 1, the standard deviation of Xt; and
3) φ, the lag-1 autocorrelation coefficient. To investigate the effect of sample size n, we considered an array of values
n ∈ {100, 200, 400, 800, 1600, 3200}. In each configuration, we generated 10,000 replicates. The block bootstrap sam-
pling step was done with function tsboot from R22 package boot,23 with block size �n/l�. This function by default
is an implementation of moving block bootstrap as described in the previous section, meaning that that blocks are al-
lowed to wrap around, and we tried both l = �n1/3� and l = �2n1/3�, keeping the order of the block size constant but
varying the coefficient. For each replicate, we constructed six 95% block bootstrap CIs for each parameter as described
in the last section with B = 1000. We can estimate μ, σx, and φ by computing the sample mean, sample standard de-
viation, and lag-1 autocorrelation, respectively, of each bootstrap sample. Then we can construct intervals for each pa-
rameter using the appropriate procedures described in Block Bootstrap CIs. Then we estimated their actual coverage rates
along with their 95% confidence intervals from the 10,000 replicates.

The coverage rates of the CIs were used to compare the performance of CIs. Let θ̂L,r and θ̂U,r be the lower and upper
bound, respectively, for the confidence interval constructed for each replicate r ∈ {1, . . . , R}, where R is the number
of replicates. Then the empirical coverage rate is

∑R
r=1 I{θ̂L,r < θ < θ̂U,r}/R, where I(·) in the indicator function.

If a CI method is valid, then the coverage rate is expected to match the nominal level. Because it is unlikely for the
coverage to exactly match the nominal level, we can construct a 95% Clopper-Pearson exact CI of the coverage rate,24

which is an estimate of a proportion with R = 10, 000. We used the R PropCIs package to achieve this.25 The choice of
Clopper-Pearson was motivated by the Wald interval’s poor coverage as the proportion approaches 0 or 1,26 although
when we tried Wald intervals, the coverage rate intervals did not appear to have large differences. If the proportion 0.95
is included in the interval, the block bootstrap method is likely performing well. If all values in the interval are below
0.95, the results would suggest that the method either is providing inaccurate estimation, is underestimating the process’
variability, or a combination of both. If all values in the interval are above .95, the results suggest that the method is
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overestimating the process’ variability. Figure 1 summarizes the empirical coverage rates and the 95% confidence inter-
vals of the real coverage for a marginal standard normal distribution using block bootstrap with l = �n1/3�, generated
using the R ggplot2 package.27

Marginal Unit Exponential Distribution
Additionally, to investigate if the results are robust to nonnormal marginal distributions, we evaluated the performance
of block bootstrap for a time series with a non-normal marginal distribution. Specifically, we estimated the mean, stan-
dard deviation, and the lag-1 autocorrelation coefficient of a stationary series with marginal unit exponential distribu-
tion. Note that we expect the CIs that are based on bootstrap “tables" to depend on the asymptotic distribution of the
estimator. This asymptotic distribution depends more on the sample size than on the marginal distribution of the time
series. So we expect such CIs to have similar performance for different marginal distributions when the sample sizes is
large. The percentile-based CIs (Percentile, BC, BCA, Recentered Percentile) are not necessarily expected to perform
better under non-normal marginal distributions. The student’s t and and normal-based CIs are only noticeably different
when the number of blocks is smaller than 20.

The series were generated by marginally transforming the AR(1) series Xt in the first simulation study by

Wt = F−1[Φ(Xt)],

where F−1(p) is the quantile function for the unit exponential distribution. The true mean (μ) and standard deviation
(σw ) parameters of Wt are 1. The lag-1 autocorrelation coefficient (ρ) is not invariant to the transformation,28 but its
value can be obtained by ∫ ∞

−∞

∫ ∞

−∞
F−1[Φ(x)]F−1[Φ(y)]g2(x, y;φ)dxdy − 1,

where g2(x, y;φ) is the density of a standard bivariate normal distribution with correlation parameter φ. We kept the
configuration of φ ∈ {−0.4,−0.2, 0.0, 0.2, 0.4}, and the corresponding lag-1 autocorrelation coefficients are ρ ∈ {−0.298,

−0.156, 0, 0.170, 0.355}.

SIMULATION RESULTS
Marginal Standard Normal Distribution
For estimating the mean parameter μ, the top panel of Figure 1 suggests that all methods eventually approach correct
coverage of μ as sample size increases. Student’s t CIs appear to need the smallest sample size to achieve correct cover-
age, except for samples with strong negative dependence, in which case, they actually over-cover μ for smaller sample
sizes. For instance, for a sample with n = 100 and φ = −0.4, the lower bound for a Students t CI’s coverage of μ
is greater than 95%, whereas the coverage intervals for other methods contain 95%. The standard normal, percentile,
BC, and BCA, and recentered percentile CIs require similar sample sizes to recover μ at the nominal level for all com-
binations of n and φ. All methods seem to require a smaller sample to recover μ at the nominal rate when dealing with
negative dependence versus positive dependence. For example, BC CIs recover μ for n ≥ 100 when φ = −0.2, but
they only recover μ for n ≥ 800 when φ = 0.2. In addition, as a negative dependence gets stronger, holding every-
thing else equal, coverage increases, which lead to the Student t CI’s aforementioned over-coverage. As a positive de-
pendence gets stronger, holding everything else equal, coverage decreases, and a larger sample is necessary to recover μ.
A possible explanation for this is that if a stationary series has a positive autocorrelation, the effective sample size is
decreased, whereas if a series has a negative autocorrelation, the effective sample size is increased.29 Additionally, this
seems to have a greater effect on the the estimation of the location parameter versus that of the scale parameter or tem-
poral dependence parameter.

For estimating the standard deviation parameter σx, Figure 1 suggests that every method can reach nominal coverage
of σx if the sample is large enough, but for a given n and φ, coverage of σx will be lower than coverage of μ in gen-
eral. Like μ, σx can be covered by Student t CIs with smaller sample sizes when compared to other methods. Unlike
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Figure 1. Empirical coverage rates of different 95% block bootstrap CIs for the marginal mean μ, the marginal standard deviation σx, and the first-order
autocorrelation coefficient φ of an AR(1) process with a marginal standard normal distribution with AR coefficient φ ∈ {−0.4, 0.2, 0, 0.2, 0.4} and
series length n ∈ {100, 200, 400, 800, 1600, 3200} based on 10,000 replicates of block bootstrap with l = �n1/3�. The error bars represent 95% CIs of
the real coverage rates. Top: l = �n1/3�. Bottom: l = �2n1/3�.
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Figure 2. 50 replicate percentile, BC, and recentered percentile CIs for samples of size n ∈ {800, 1600} (l = �n1/3�) for the lag-1 autocorrelation of an
AR(1) process with φ = 0.4. For each replicate, the lower and upper bounds of the CIs are displayed, as well as θ̂n (blue circle) and θ̄Bn (red cross).

μ, there is no over-coverage issue for σx when φ = −0.4. Standard normal, percentile, BC, BCA, and recentered per-
centile CIs again have similar performance. All methods seem to have slightly higher coverage of σx when φ is negative
versus when φ is positive. Regardless of the sign, coverage of σx gets worse as the strength of the temporal dependence
increases.

For estimating the autocorrelation parameter φ, Figure 1 suggests that while standard normal, Student’s t, and recen-
tered percentile CIs do approach correct coverage as sample size increases, percentile, BC, and BCA CIs deteriorate as
sample size increases, especially as the strength of the temporal dependence increases. Because of this, only standard
normal, Student’s t, and recentered percentile CIs should be considered as effective block bootstrap methods to estimate
φ. Student’s t CIs once again can achieve correct coverage with smaller sample sizes when compared to standard and
recentered percentile CIs which perform similarly. Student’s t CIs can can recover φ at the nominal level for n ≥ 100

when the sample’s temporal dependence is as strong as 0.4. Coverage appears to be higher for all methods when the de-
pendence is negative rather than positive. Whether or not the dependence is negative or positive, coverage of φ seems
to increase slightly as the absolute value increases for standard normal, Student’s t, and recentered percentile CIs. For
the values of φ observed, there are no examples of over-coverage for standard normal, Student’s t, BC, BCA, or recen-
tered percentile CIs. However, percentile CIs appear to over-cover φ for smaller sample sizes when φ = −0.2 and when
φ = 0, indicating again that they should not be used.

The outcomes of the φ estimation raise a natural question about the lackluster performance of certain methodologies.
To delve into this inquiry, a set of 50 CIs was generated for each of the percentile, BC, and recentered percentile ap-
proaches for samples of n ∈ {800, 1600}. Illustrated in Figure 2, it becomes evident that the percentile-based CIs ex-
hibit a notable bias, predominantly manifesting as a substantial underestimation of φ with point estimator θ̄Bn , that is,
the average of B bootstrap point estimates. As the sample size increases from 800 to 1600, this bias does not vanish
while the uncertainty reduces, which explains why the coverage rates deteriorate. The bias in θ̄Bn also appears to inval-
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idate the bias-correction in the BC bootstrap, leading to the poor performance of the BC intervals. The BCA intervals
have the same problem as the BC intervals in the bias-correction step. The root of the issue appears to be that the au-
tocorrelation in the block bootstrap samples is somehow smaller compared to that in the original sample. On the other
hand, the original point estimator θ̂n is asymptotically unbiased. Since the width is based on the uncertainty in the
bootstrap point estimates θ̂(b)n , b = 1, . . . , B, the percentile CIs recentered at the original point estimate θ̂n provide
desired coverage.

To summarize, the performance of the CIs depends on the target parameter. When estimating μ and σx, any CI will
do, although Student’s t CIs perform noticeably better than the others. However, when estimating φ, the choice of
method is of utmost importance as to avoid coverage deterioration. Coverage rates are acceptable at smaller sample
sizes when phi is positive versus when phi is negative. In other words, a larger sample size is generally required to es-
timate a parameter for a sample with a negative φ versus a positive φ of the same magnitude. In order to know if cover-
age will increase as the strength of the temporal dependence increases, one need to know what the parameter of interest
is, and in the case of μ, the direction of the serial dependence. The BC approach does not seem to be correcting bias
appropriately when estimating φ. Like the percentile method, the recentered percentile method uses the spread from
the bootstrap to construct the width of the CI. However, the recentered approach, does not correct from the original
point estimate θ̂n.

The results for l = �2n1/3� are reported in the bottom panel of Figure 1. The performances generally seems to be
inferior compared those with l = �n1/3�, but importantly, the patterns in performance when varying other parameters
appear to be robust to the different block size. For negative autocorrelations, the coverage rates of μ appear to be lower
when using l = �2n1/3�. For example, whereas n = 100 or 200 would seem sufficient for most CIs when using l =

�n1/3�, n = 800 or 1600 is necessary to capture negative autocorrelations for l = �n1/3�. Student’s t CIs do not seem
to be as affected by this change in l: for φ = −0.4 and -0.2, they still over-cover μ for smaller values of n. The results
for σx with l = �2n1/3� look very similar to those the results for σx with l = �n1/3�, but coverage rates of σx do look
slightly lower especially for negative values of φ, although Student’s t CIs are again not as influenced by this change
in l. A larger sample size seems necessary when using other CIs to estimate σx for l = �2n1/3�. Recentered percentile
and standard CIs have slightly lower coverage rates when estimating negative values of φ with l = �2n1/3�. Although
it is still a problem, the coverage deterioration appears to be less dramatic for BCA, BC, and percentile CIs. Aside from
these differences, the overall changes in performance when other experimental factors are changed are the same as when
l = �n1/3�.

Marginal Unit Exponential Distribution
For the scenario of marginal exponential distribution, the empirical coverage rates for μ, σw, and the lag-1 autocorrela-
tion coefficient ρ using block bootstrap with l ∈ {�n1/3�, �2n1/3�, as well as 95% confidence intervals of the real cover-
age are displayed in Figure 3. Additionally, a set of 50 CIs are displayed for each of the percentile, BC, and recentered
percentile approaches for exponentially distributed samples of n ∈ {800, 1600} with lag-1 autocorrelation coefficient
0.355 (φ = 0.4) in Figure 4.

It appears that a greater sample size is generally required for the bootstrap CIs to cover the mean and standard devia-
tion parameters in the exponential margin case than in the normal margin case. However, the other trends and patterns
discussed regarding the performance of various methods and diverse parameters remain unchanged. For example, Stu-
dent’s t confidence intervals still exhibit higher coverage rates in comparison to alternative methods. Performance con-
tinues to be more favorable when temporal dependence is negative rather than positive. Again, altering the block size
results in the same changes in performance of different CIs as those in the scenario of marginal normal distribution.
Of particular significance, the percentile, BC, and BCA confidence intervals still display a decline in coverage accuracy
for the lag-1 autocorrelation coefficient as sample size increases as demonstrated in Figure 4. Both the percentile and
BC intervals persist in manifesting the same bias issue. On the other hand, the recentered percentile confidence interval
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Figure 3. Empirical coverage rates of different 95% block bootstrap CIs for the marginal mean μ, the marginal standard deviation σw , and the first-
order autocorrelation coefficient ρ of a stationary series with marginal unit exponential distribution obtained by transforming an AR(1) process with
φ ∈ {−0.4, 0.2, 0, 0.2, 0.4} with series length n ∈ {100, 200, 400, 800, 1600, 3200} based on 10,000 replicates replicates of block bootstrap with
l = �n1/3�. The error bars represent 95% CIs of the real coverage rates. Top: l = �n1/3�. Bottom: l = �2n1/3�.
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Figure 4. 50 replicate percentile, BC, and recentered percentile CIs for the lag-1 autocorrelation coefficient ρ = 0.355 (φ = 0.4) of a stationary series
with marginal exponential distribution obtained by transforming an AR(1) process with φ = 0.4 with sample size n ∈ {800, 1600} (l = �n1/3�). For
each replicate, the lower and upper bounds of the CIs are displayed, as well as θ̂n (blue circle) and θ̄Bn (red cross).

continues to be effective in estimating the temporal dependence due to the inherent unbiasedness of the original point
estimator. In sum, for the most part, the findings for series that are marginally exponentially distributed closely mirror
those attained for series that are marginally normally distributed.

DISCUSSION
Block bootstrap is a useful method for estimating parameters of a time series, from simple parameters like the mean to
more complicated temporal dependence factors. We know theoretically that the block bootstrap procedure will cover
a parameter of a time series at the nominal level given an infinitely large sample,7 so the goal for this study was to
find the smallest finite sample length n of a time series in order for the block bootstrap procedure to recover its asso-
ciated parameters at an acceptable rate. Our analysis relies on the assumption that there is a size n large enough for
the method to work: that is, the method’s performance improves as n increases. Out of the six types of intervals used
in this study, this assumption was found to hold true with respect to estimating φ only for standard normal, Student’s
t, and recentered percentile CIs, whereas percentile, BC, and BCA intervals exhibited coverage deterioration as n in-
creased. The percentile CI’s coverage deterioration can be attributed to bias that is not corrected as n increases. Specif-
ically, as n increases, the width of the CI decreases, but because the percentile CI underestimates φ, the coverage de-
creases. The BC CI seems to correct the bias, but the width of the CI seems to be too short. The acceleration factor of
the BCA CI seems to fail, as the width of the CI seems to be too short.

One of the goals of this study was to provide some practical recommendations for necessary sample sizes when us-
ing block bootstrap to estimate the parameters of serially dependent data. When using Student’s t intervals and the
marginal distribution and temporal dependence is unknown, the results of this study suggest that n ≥ 1600 may be
necessary for common practice to estimate μ, whereas n > 3200 may be necessary to estimate the standard deviation.
Student’s t is always preferable to Standard Normal CIs as they performs better for smaller sample sizes and performs
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as good or better for larger sample sizes. Lastly, to estimate lag-1 autocorrelation, n ≥ 100 using the Student’s t method
may be sufficient under a marginal standard normal distribution, whereas n ≥ 1600 may be required under under a
marginal exponential distribution. Further investigation may be necessary to see if there are other percentile-based in-
terval corrections that fix the coverage deterioration problem for φ.

Although we have only used serial dependences as strong as 0.4, we have established the trends as |φ| gets larger. When
estimating μ, we expect coverage rates to decrease as φ approaches 1 — as φ approaches -1, we may observe increased
over-coverage. When estimating the standard deviation, we expect a larger sample size to be necessary as |φ| gets closer
to 1. Lastly, when estimating φ for a marginal normal distribution, we expect a larger sample size to be necessary as |φ|
approaches 0, assuming standard normal, Student’s t, or recentered percentile CIs are used. However, when estimating
the first-order autocorrelation of a marginal exponential distribution using the same methods, we expect coverage rates
to respond to stronger dependences in a trend similar to that of coverage rates of μ. We expect other percentile-based
CIs, which are already inadequate for relatively weak dependence structures, to perform even worse as |φ| approaches 1.

This study could be used as a guide for applied statistics courses for students to generally understand how large of a
sample size is sufficient for block bootstrap to be used versus other inference methods. For undergraduate or gradu-
ate students, block bootstrap is not typically a part of curriculum, but the results of this study can easily be used to
demonstrate when it is practical to use this method. This information could also prove to be useful for research us-
ing block bootstrap estimation of time series in domains such as econometrics. Future studies could investigate the n
needed to make inferences about other forms of serially dependent data such as a moving average process. One could
also investigate if there are types of block bootstrap interval construction such as ABC or bootstrap-t intervals19 that
could more appropriately recover the parameters of a time series. We discussed some drawbacks of block bootstrap in
the introduction, which could motivate a similar simulation study for alternatives to block bootstrap, such as AR-Sieve
bootstrap,30 which Buhlmann 10 finds to be the best for linear time series. Finally, there is a need for a more in-depth
exploration to comprehend the reasons behind the subpar performance of existing percentile-based CIs when estimat-
ing the autocorrelation parameter. It is crucial to conduct a thorough investigation into the specific scenarios where the
proposed CI demonstrates superior performance and the conditions under which it should be recommended.
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PRESS SUMMARY
This simulation study evaluates the sample size necessary to estimate the mean, standard deviation, and lag-1 autocor-
relation of a stationary time series using different block bootstrap confidence interval types. The results showed that
percentile-based confidence intervals for the lag-1 autocorrelation may suffer from coverage deterioration as sample size
is increased, motivating the authors to propose a new recentered percentile confidence interval which does not deterio-
rate in performance for greater sample sizes. The results also suggest that when using Student’s t bootstrap confidence
intervals, a sample size of at least 1600 may be sufficient to estimate the mean, whereas a sample size larger than 3200
may be necessary to estimate the standard deviation. The results additionally indicate that estimation of the lag-1 auto-
correlation - using Student’s t bootstrap confidence intervals - demands a sample size of at least 100 when the marginal
distribution is standard normal and a sample size of at least 1600 when the marginal distribution is unit exponential.


