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ABSTRACT 
Dynamic Structural Equation Model (DSEM) is a powerful statistical modeling approach that has recently gained popularity 
among researchers studying intensive longitudinal data. Despite its exciting potential, the stability and replicability of DSEM is yet 
to be closely examined. This study empirically investigates DSEM using recently published data to explore its strengths and 
potential limitations. The results show that while some of its parameter estimates are stable, others are characterized by substantial 
variation as a function of seemingly innocuous initial model estimation conditions. Indeed, some parameters fluctuate between 
significance and non-significance for the same model estimated using the same data. The instability of DSEM estimates poses a 
serious threat to the internal and external validity of conclusions drawn from its analyses, challenging the reproducibility of 
findings from applied research. Given the recent focus on the replication crisis in psychology, it is critical to address these issues 
as the popularity of DSEM in psychological research continues to rise. Several potential solutions are investigated to address this 
problem and recommendations of best practice are offered to applied researchers who plan to use DSEM in intensive longitudinal 
data analysis. 
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INTRODUCTION 
Human psychology weaves together like an intricate tapestry, where the threads of cognition and behavior intertwine, creating a 
rich and complex individual. One of the most important goals in the behavioral sciences is to disentangle the threads and study 
the cause—effect pathways that shape the individual. In order to study such relationships, researchers need longitudinal data—
that is, repeated assessments of individuals collected over the course of weeks, months or even years. With increasing recognition 
that life unfolds continuously over time, there has been a push towards intensive longitudinal data (ILD) analysis in which a large 
number of assessments are taken in shorter time intervals of days or even hours.1 Although characterized by many strengths, ILD 
comes with its own set of unique challenges in measurement and modeling. A key challenge is to satisfactorily examine co-
developmental processes where cause-and-effect influences are studied in two or more processes over multiple time points. 
Quantitative models like autoregressive cross-lagged (ARCL) have been developed for the analysis of longitudinal data, although it 
is increasingly appreciated that such traditional models fail to accurately capture co-developmental processes in ILD.2 The tapestry 
of human psychology, quite unsurprisingly, is just too tightly knit and it has challenged the statistical might of generations of 
quantitative psychologists.  
 
However, a novel method of modeling these dynamic processes has recently been introduced for the analysis of ILD:  Dynamic 
Structural Equation Model, or DSEM.3 DSEM has the potential to move well beyond the confines of conventional techniques. It 
provides a comprehensive framework for modeling and analyzing the reciprocal interplay of co-developing phenomena at both 
the individual and group level. Indeed, DSEM offers the prospect of testing research hypotheses in the behavioral sciences in 
ways not previously possible. DSEM’s application in the myriad fields of social sciences has garnered significant attention. A 
recent study from McNeish and Hamaker4 is an illustrative discussion on how DSEM can be employed in applied research. Yet, 
given DSEM’s recent development and strong encouragement for use, almost nothing is known about the stability of its 
estimation and the replicability of its results. It is paramount that DSEM be subjected to rigorous scrutiny before its widespread 
adoption in applied research. The goal of our paper is to provide an initial examination of the stability and replicability of DSEM 
under conditions commonly encountered in applied research. We reanalyze previously published data across a range of initial 
conditions in order to demonstrate what aspects of the DSEM are and are not stable and replicable. 
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METHODS AND PROCEDURES 
DSEM brings together elements of three well-established analytic methods: Structural Equation Modeling (SEM), multilevel 
modeling (MLM) and time series analysis.3,4 Similar to MLM, DSEM accommodates nested structures in the data, where 
observations are clustered under higher level units (here, time nested within individuals). The model representing the higher-level 
unit is called the between-person model and the individual models nested under the higher-level unit is called the within-person model. 
DSEM uses time series analysis to model the autocorrelations in the within-person model for intensive longitudinal data. 
Moreover, incorporation of SEM allows DSEM to model the individual differences in the time-series parameters as latent 
variables. This integrative approach fills critical gaps left by individual methods. For instance, MLM handles interindividual 
variability but not latent variables. SEM deals with latent variables but lacks the flexibility for highly dense time measures and for 
random effects on model parameters. By bringing these methodologies together, DSEM emerges as a powerful tool capable of 
addressing the limitations of its constituent methods and offering a more comprehensive analytical framework for studying 
complex data structures. 

DSEM provides both a powerful and flexible statistical framework, making it a valuable tool in the social sciences. A clinical 
psychologist interested in nicotine addiction and depression may hypothesize that depression and urge to smoke are entangled 
together in a codeveloping process.5,6 Job stress and home stress may act as a catalyst to the situation by elevating an individual’s 
level of depression and in turn entangling the urge to smoke and depression in a tighter yarn. McNeish and Hamaker4 provide a 
guide to any researcher who wishes to test out such hypotheses using DSEM. The simulated dataset from the paper had 
measurements on depression, urge to smoke, home stress and job stress for 100 individuals across 50 discrete time points. This 
dataset is suitable to be analyzed using DSEM because it has a comparatively large sample of individuals, all measured over 
multiple time points. The presence of an observed variable with an autoregressive component (in case of urge to smoke) and 
without the autoregressive component (in case of depression) requires time series analysis. Proper treatment of the time invariant 
covariates of job and home stress necessitates the use of MLM. The latent variables used in the model draw heavily from the SEM 
literature. In short, the complexities of the dataset demand a flexible framework that attends to all these needs. Here we reanalyze 
the same data with our primary focus on the time-invariant covariate (TIC) DSEM as elucidated in McNeish & Hamaker.4  
 
The path diagrams and representative equations1-6 delineate the TIC DSEM. In this context, depression and urge to smoke are 
defined as time-varying covariates (or TVCs). For each individual, the urge to smoke at a time point (t) is dependent on their urge 
to smoke at the previous time point (t-1) and their depression at the same time point (t). This is represented in Equation 1. The 
random slopes at the within-person level resurface in the consequent Equations 2-4. At the between-person level, job stress and home 
stress affect the random slopes. Job and home stress are constant for each individual and therefore act as the TICs. The TICs are 
grand mean centered as opposed to Depib which is latent person-mean centered. In Figure 1a, the gamma ( ) variables represent 
the fixed effect of its predictor, and the u terms represent the random inter-subject effect. The tau ( ) variables stand for variances 
of the u parameters. For the physical description of each parameter, refer to Table 1. 

Figure 1a. 
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Figure 1b. 
Figure 1. The figure displays the path diagrams of the between-person model (1a) and the within-person model (1b) for the TIC DSEM outlined in McNeish and 

Hamaker.4 The rectangular boxes stand for variables that were directly measured and the circles represent latent variables estimated from the data. Note: path 
diagrams have been adapted from McNeish and Hamaker.4 

Including the latent person-mean centered Depcti in the within-person model and the latent person-mean Depbi in the between-
person model allows the complete disaggregation of the total effect of depression observed in the raw data (Equation 5). Latent 
person-mean centering approach treats Depbi as an unknown quantity that has to be estimated and thus properly accounts for 
measurement error.7 This inclusion allows researchers to discern the impact of unit change in a covariate on its outcome at a 
specific measurement occasion (the within-person effect). In this scenario, Depbi influences i (Equation 2), the mean urge to 
smoke of an individual which also shows up at the within person level. Moreover, researchers can inspect how a one-unit change 
in the covariate mean across all measurement occasions affects the average of the outcome variable (the between-person effect). 
By including both effects in the model simultaneously, it is possible to investigate whether the within-person and between-person 
effects differ. 
 
While DSEM is a versatile framework, it is quite complex and requires advanced methods for statistical estimation. The 
commercial software program Mplus,8 the only package that currently implements DSEM, uses Bayesian estimation with a Gibbs 
sampler. The Gibbs sampling approach enables the estimation of parameters using conditional distributions, given that the 
conditional distributions are known and are easier to sample from compared to the unknown and often complex joint 
distribution.9 It begins with an initial seed value for all the parameters. In the first iteration, it fixes the values of all parameters 
besides one and samples the value of the unfixed parameter from its conditional distribution. The estimator then selects a separate 
parameter, fixes the rest and samples from its conditional distribution. This process goes on until a new sample of values for all 
the parameters have been generated from their respective conditional distributions. The estimator continues sampling in multiple 
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iterations and the samples begin to approximate the joint distribution of the parameters. This technique is elegant because it uses 
the local dependencies and enables efficient exploration of high-dimensional spaces without having to directly sample from the 
often intricately complex joint distribution. In a model like DSEM with multiple parameters and a complex parameter space, 
Gibbs sampling is a logical option for estimation.  
 
However, Gibbs sampling is not without its own set of challenges.10,11 One key concern lies in its sensitivity to initial conditions, 
or the seed values. Since initial conditions guide its sampling of the posterior distribution, the first few samples can be biased, 
sometimes substantially so. Therefore, the initial samples are often discarded, a process referred to as the burn-in. In addition to 
burn-in, multiple sampling chains can be used to explore the space. The initial conditions assigned to the parameters might push 
the chains towards a local region of the distribution, making samples from the distribution seem biased. This underscores the 
importance of an extensive number of iterations to facilitate convergence.  

 
To assess convergence, a commonly employed criterion is the Potential Scale Reduction Factor (PSRF)12. This criterion hinges on 
the idea of interchain variability, wherein a PSRF value equal to 1 means that the samples acquired from the chains are 
indistinguishable from each other. From a PSRF=1, it can be assumed that the chains are sampling from the same distribution—
the true posterior distribution. McNeish and Hamaker4 adhered to the default values within Mplus,8 in which the first half of the 
samples were discarded as burn-in and two chains were used in exploration. The number of iterations was set to a maximum of 
1000 and the convergence criteria called the Potential Scale Reduction Factor (PSRF) was set to the default value of 1.1.  
 
While a PSRF value of 1 may take an unfeasibly long time to achieve, PSRF values close to 1 are achievable. However, this 
convergence criterion does not ensure that the samples obtained from the chains generate reproducible samples of the posterior 
distribution. It is possible that the stochastic algorithm becomes stranded in some region of the parameter space and requires a 
substantially longer period of time to converge to the true posterior distribution.13 Moreover, PSRF is extremely dependent on the 
shape of the posterior. It has been observed that for heavily skewed posterior distributions PSRF does not converge to 1.0 even 
with increasing sample size.14 Therefore, it is essential to use multiple random seeds or initial conditions to check if the chains are 
producing similar or the same parameter estimates. If, after a reasonably extensive list of initial conditions, each independent of 
the other, the parameter values rest stably at the same values, it can be said that the estimator is sampling from the true posterior 
distribution. Such assessment of parameter stability is critical while investigating model stability.  
 
McNeish and Hamaker only used a single seed value and a single PSRF value for all of their analyses. It is unknown if their final 
solution was dependent on the initial conditions of chains and the default parameters of the convergence criteria. To assess the 
stability of the parameter estimates and their dependence on initial conditions, we first randomly sampled 1000 seed values 
(without replacement) from integers ranging from 1 to 100000 using R (version 4.2.2).15 Next, we estimated 1000 separate 
DSEMs, each using one of the randomly sampled seeds. The models were run on Mplus using MplusAutomation16 (version 1.1.0) 
in R. To further probe the stability of these estimates, we introduced variations in the estimator such that the maximum number 
of iterations allowed was systematically altered (values of 1000, 10000 and 30000) as well as the value of the PSRF (values of 1.1, 
1.05, 1.01 and 1.005). These manipulations of the convergence criteria were aimed to provide a more nuanced understanding of 
the impact of such criteria and initial conditions in the estimation of DSEM. The parameter estimates, defined by default as the 
median of the parameter’s posterior distribution, were recorded across the 1000 initial conditions encompassing the variations in 
the PSRF thresholds and iteration counts. The median values of each of the parameters for the 1000 different seed values were 
visualized through boxplots for each of the conditions. The analysis was done in R15 and the visualizations were created using 
ggplot2 (version 3.4.4).17 To reduce redundancy, for some of the conditions we report the mean, median, standard deviations and 
quartiles of the parameters instead of plotting the boxplots.  
 
Besides the parameter estimates, a record was maintained concerning the inclusion of 0 in each parameter’s credible interval in its 
posterior distribution. In Bayesian statistics, the posterior distribution of the parameters is used to discuss its estimate and 
precision. However, frequentists using Gibbs sampling to estimate DSEM might use the presence or absence of 0 in the credible 
intervals of the parameter distribution for significance testing. It should be noted that this is not a true null hypothesis significance 
test, as the concept of null hypothesis testing does not fit well in the pure Bayesian perspective. However, as seen in McNeish and 
Hamaker4, researchers use Bayesian credible intervals for null hypothesis testing. We do not wish to deviate from the analysis 
perspective used in McNeish and Hamaker4, therefore we use the inclusion of 0 in the Bayesian credible intervals as a test of 
significance. The following discussion will include both the stability of the parameter estimates and the significance of the 
parameters to foster a more holistic insight into the problem at hand.  
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RESULTS 
We present the findings from the TIC DSEM analysis, as discussed in McNeish and Hamaker4 in Table 1. 

Table 1. Estimates and 95% Credible Intervals for the TIC DSEM. Note: The data have been taken from McNeish and Hamaker4 and these are estimates from 
one seed value with 1000 being the maximum number of iterations allowed for the estimator. 

 
The analysis reveals significant time-invariant effects in the model. Covariates for the intercept predict that stresses in the work 
and home environment increase the baseline Urge to Smoke for individuals. Specifically, a one-unit increase in Job Stress leads to 
a .50 unit increase in the mean Urge to Smoke while one-unit increase in Home Stress leads to a .33 unit increase in the same. The 
estimates for 11 and 12 are non-null and indicate that Home Stress and Job Stress strengthen the carryover effects of Urge to 
Smoke by .06 and .12, respectively. 21 and 22 are significant as well. These parameters provide evidence that increases in Job 
Stress and Home Stress is similarly predictive of a stronger effect of Depression on Urge to Smoke. 21 is estimated to be .29, 
which means a one—unit increase in Job Stress increases i, or the slope of depression on urge, by .29. Similarly, 22 estimated to 
.35 means a one unit change in Home Stress increases the slope of depression on urge by .35 units. Notably, the person mean of 
Depression does not appear to have any significant effect on the person mean of Urge to Smoke as 03 has 0 in its 95% credible 
interval. This lack of a significant effect can be interesting to clinical psychologists because it implies that treating only depression 
will not have any effect on smoking tendencies and vice versa. This necessitates targeted interventions for both depression and 
smoking behavior. However, before clinicians begin developing novel interventions, it is imperative to check the robustness of 
these estimates to save time, effort and financial resources. Thus, we tested if McNeish and Hamaker’s reported estimates were a 
local solution using different seed values for the estimation.  
 
Since the original paper had employed 1000 iterations as the convergence criterion, we began with the same. However, instead of 
using just one seed value, we initiated the sampler with 1000 different seeds. To our concern, a substantial subset of the seeds failed 
to converge. The fact that no valid results could be obtained from these instances was, in itself, a disconcerting finding. Therefore, 
we shifted our focus to the first 100 seeds that exhibited convergence. Figure 2 shows the estimates of the model parameters for 
the 100 initializations. Notably, the boxplots for most of the parameters show minimal variability indicating no sensitivity to the 
initial conditions of the sampler, affirming DSEM’s reliability in most instances. However, a concerning degree of variability was 
observed in 03, the effect of the person mean of depression on the baseline urge to smoke, exhibiting marked sensitivity to the 
initial conditions of the sampler. While 30, or the mean value of depression, is not as variable as 03, three seeds among the 100 
emerged as statistically significant. These findings indicate that key substantive conclusions from the TIC DSEM could be fully 

Effect Notation Posterior Median 95% Credible Interval 

Intercept (Alpha): overall intercept capturing the baseline urge to 
smoke 

00 .06 [-.14,.30] 

Intercept (Phi): overall autoregressive intercept capturing the 
baseline autoregressive effect 

10 .19 [.16,.22] 

Intercept (Beta): overall effect of depression on the urge to smoke 
capturing the baseline effect 

20 .79 [.62,.95] 

Intercept (Dep): overall effect capturing the baseline influence of 
depression on the urge to smoke 

30 .02 [-.01,.05] 

Alpha on Job Stress: effect of job stress on the baseline urge to 
smoke 

01 .50 [.35,.65] 

Alpha on Home Stress: effect of home stress on the baseline urge 
to smoke 

02 .33 [.19,.46] 

Alpha on Dep: effect of the person mean of depression on the 
baseline urge to smoke 

03 -2.35 [-11.22,4.35] 

Phi on Job Stress: effect of job stress on the autoregressive effect 11 .12 [.09,.15] 

Phi on Home Stress: effect of home stress on the autoregressive 
effect 

12 .06 [.03,.08] 

Beta on Job Stress: effect of job stress on slope of depression on 
urge 

21 .29 [.11,.48] 

Beta on Home Stress: effect of home stress on slope of depression 
on urge 

22 .35 [.17,.51] 

Var. (Alpha): individual specific baseline urge to smoke 00 .34 [.16,.49] 

Var. (Phi): variance of the autoregression 11 .01 [.00,.01] 

Var. (Beta): variance of influence of depression on urge 22 .64 [.47,.88] 

Var. (Dep): variance of depression 33 .01 [.00,.01] 

Res. Var. (Urge): residual variance of urge to smoke 2 1.14 [1.09,1.18] 
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dictated by the arbitrary seed value chosen for the analysis. The challenges of non-convergence and the parameter instability 
underscore the need for a higher number of iterations in the Gibbs sampler to achieve more stable estimates. 

 

 
 

Figure 2. The figure displays boxplots for all TIC DSEM parameters based on 100 seeds, each subject to a 1000-iteration convergence criterion. 03 clearly has the 
highest variability of all the parameters.   

 
We extended the number of iterations substantially beyond the original recommendation and employed a convergence criterion of 
10000 iterations. Under this criterion, all the seeds converged but the stability of parameter 03 remained elusive. As seen in Figure 
3, 03 in this condition shows more variability than any of the other parameters. Moreover, 47 out of 1000 seeds yielded significant 
results for the mean value of depression ( 30). This prompted an exploration of the convergence criterion of 30000 maximum 
iterations. The results persisted. 03 showed no change in standard deviation, as can be seen in Table 3. 30 had an equal number 
of significant seeds. These results concern us about potentially misleading significant results. If a random seed value can produce 
significance, researchers need to be cautious while interpreting results from DSEM. 
 

 
 

Figure 3. The figure displays boxplots for all TIC DSEM parameters based on 1000 seeds, each subject to a 10000-iteration convergence criterion. 03 clearly has 
the highest variability of all the parameters. Note: This figure differs from Figure 2 on the crucial fact that for iterations set to 10000, all the models converged 

successfully, unlike iterations set to 1000. Therefore, this figure represents estimates from 1000 models as opposed to 100 from Figure 2. 
 

Upon a thorough investigation into the convergence threshold used in the sampling algorithm, it became evident that the 
estimator relies on the similarity of samples from the posterior distribution. Using a higher number of iterations might result in 
the chains exploring the distribution better, but it does not ensure that the samples from the different chains will emerge similar 
to each other. Therefore, we employed a convergence threshold based on interchain variability called the Potential Scale 
Reduction Factor (PSRF). As described earlier, this criterion ensures that the estimator continues running until a predetermined 
value is attained. 
 
The PSRF criterion is based on Gelman and Rubin’s seminal paper of 1992, where they recommended PSRF values less than or 
equal to 1.1 as an indicator of convergence. Consequently, Asparouhov and Muthén18 suggested that PSRF values between 1.1 
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and 1.05 can render samples from chains virtually indistinguishable for most models. Most studies have followed these 
recommendations and use PSRF values between 1.1 and 1.05. Thus, we set the PSRF convergence criterion to values of 1.1 and 
1.05. Under both convergence criteria, 03 exhibited variability. As shown in Figure 4, PSRF 1.1 produced results similar to the 
iterations criteria. The critical difference lay in the fact that with stricter PSRF values one could significantly reduce the variability 
in the unstable parameter. Notably, the variability was significantly reduced when using PSRF 1.05 compared to PSRF 1.1 (see 
Table 2). The number of significant seeds for 30 was 82 under PSRF 1.1, while it reduced to 47 under PSRF 1.05. It may be 
inferred that for models as complex as DSEM, lower convergence thresholds like 1.05 are better than the traditionally 
recommended value of 1.1. However, the result produced by PSRF 1.05 was identical to those yielded by the convergence 
criteria based on the number of maximum iterations. In order to improve the stability of the parameter estimates, lower 
convergence thresholds need to be used. 
  

 
 

Figure 4. The figure displays boxplots for all TIC DSEM parameters based on 1000 seeds, each subject to a PSRF 1.1 convergence criterion. 03 clearly has the 
highest variability of all the parameters.  

 
Lower convergence thresholds necessitate a departure from the standard values used with the PSRF criterion. Specifically, we 
tested thresholds as low as 1.01 and 1.005 to check if these bring stability to the parameter estimates. These values yielded a 
significant decrease in variability in the 03 parameter as can be seen in Table 2. The number of significant seeds for 30 dropped 
to 10 for PSRF 1.01 and to only four seeds for PSRF 1.005. The boxplots for the 03 parameter under the seven different 
convergence criteria are shown in Figure 5 and it is apparent that the variability changes as a function of the convergence 
criterion. Table 3 shows mean, median, standard deviation and the 25th and 75th percentiles of 03 parameter for each condition of 
convergence. It reinforces the inference that the stricter PSRF criteria reduce the standard deviation of the unstable parameter. As 
noted earlier, PSRF 1.05, iterations = 10000 and iterations = 30000 produce identical results. However, PSRF 1.01 and 
PSRF 1.005 produce significant reduction in variability. These results for the significance testing using pairwise Bartlett tests19 
with Benjamini—Hochberg correction20 are tabulated in Table 2. Although the PSRF 1.005 produces estimates with 
significantly the least amount of variability, it should be noted that computational time was a greater challenge in the case for 
PSRF 1.005 as each seed took about 50 seconds to converge with the 1000 seeds taking almost 14 hours. However, each seed 
took approximately 18 seconds to converge under PSRF 1.01 which added up to 5 hours for the 1000 models. The substantial 
investment in time prompts a careful consideration on the part of the researcher while weighing the trade-offs of each 
convergence threshold. For this model, considering the modest differences between 1.01 and 1.005 thresholds while looking at 
the mean, median and variability values, it would be wise to stick with 1.01 as the best convergence threshold.  
 
The above analysis sheds important light on some critical characteristics of the DSEM framework. While a majority of its 
parameter estimates demonstrate robustness to variations in estimator initializations, certain parameters are highly sensitive to 
seed values. This sensitivity impacts the estimates of certain parameters and the credible intervals of some others. For any 
researcher following the standard practice of using singular seed values to initialize parameters, such sensitivity in estimates would 
remain unknown and drastically influence the interpretations of results. To mitigate this sensitivity, we systematically altered the 
convergence criteria and were able to increase robustness in the parameter estimates. To ascertain statistical significance of the 
reduction in variability of the parameter 03, we employed Bartlett’s test for equality of variances.19 To account for multiple 
comparisons, we used Benjamini—Hochberg false discovery rate correction.20 
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Figure 5. The figure displays boxplots for the 03 parameter under all the 7 convergence criteria. The variability of the parameter changes as the convergence 
criteria changes with the least amount of variability being observed for PSRF 1.005. Note: Iterations=1000 uses 100 models and their parameter estimates 

because many of the models failed to converge. All the other conditions allowed all the models to converge, therefore the other boxplots are made from estimates 
of 1000 models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Pairwise Bartlett tests of the 6 groups with B—H FDR correction. Note: Iterations=1000 has not been included in this analysis due to the number of 
seeds that failed convergence. 

 

Group 1 Group 2 p value p adjusted sig 

PSRF 1.1 PSRF 1.05 .00 .00 * 

PSRF 1.1 PSRF 1.01 .00 .00 * 

PSRF 1.1 PSRF 1.005 .00 .00 * 

PSRF 1.1 Iterations 10000 .00 .00 * 

PSRF 1.1 Iterations 30000 .00 .00 * 

PSRF 1.05 PSRF 1.01 .00 .00 * 

PSRF 1.05 PSRF 1.005 .00 .00 * 

PSRF 1.05 Iterations 10000 1.00 1.00   

PSRF 1.05 Iterations 30000 1.00 1.00   

PSRF 1.01 PSRF 1.005 .00 .00 * 

PSRF 1.01 Iterations 10000 .00 .00 * 

PSRF 1.01 Iterations 30000 .00 .00 * 

PSRF 1.005 Iterations 10000 .00 .00 * 

PSRF 1.005 Iterations 30000 .00 .00 * 

Iterations 10000 Iterations 30000 1.00 1.00   
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Table 3. Mean, median, standard deviation, 25th and 75th percentiles for the estimate of 03 parameter from 1000 models. For each condition, 1000 models with 
the same architecture but different initializations produced a posterior distribution for the 03 parameter. The median of the posterior was treated as the 

estimate. Note: Iterations=1000 used 100 different seeds therefore the statistics come from the parameter estimates of those 100 models. 
 

DISCUSSION 
In this study, we explored the Dynamic Structural Equation Modeling (DSEM) framework with a focus towards the robustness of 
its parameter estimates. Using the TIC DSEM employed in McNeish and Hamaker,4 we discussed the various capabilities of the 
framework. As was shown in the aforementioned paper, DSEM has the ability to study time-invariant covariates in intensive 
longitudinal data. The model allowed an extensive analysis of how stresses in the work and home environment can have severe 
impacts on the carryover effects of the urge to smoke and in strengthening the relationship between depression and smoking 
tendencies. Using DSEM researchers can study such behavior better and thereby improve intervention programs. 
 
However, our analyses unveiled a critical insight – not all of the model’s parameter estimates exhibited stability as a function of 
initial conditions. We used 1000 different seed values to initialize the Gibbs estimator. Across different initial conditions of the 
Gibbs sampler, a majority of the parameter estimates did not display variability. A few parameters proved to be exceedingly 
sensitive to seed values. The sensitivity affected the estimated values of certain parameters and the credible intervals of others. For 
the simulated dataset used in this study, the instabilities arose from 03, the effect of the person mean of depression on the 
baseline urge to smoke, and 30, or the mean value of depression. Unfortunately, it is difficult to make any inference as to why 
these parameters specifically show fluctuations. It is suspicious that both the variables are associated with the latent mean centered 
Dep, which may be the unstable component of the model. Here we can only ponder, but future research would do good to shed 
light on this issue. Although the underlying reasons are unclear, it should be acknowledged that this finding is disconcerting as 
model results are assumed to be stable across arbitrary initial conditions. Such lack of robustness can have cascading effects on 
the interpretation of results in academic papers. Yet all current recommendations for the widespread use of DSEM in practice do 
not address this issue. Therefore, it is imperative that applied researchers be aware of these issues before deciding to use DSEM in 
their research endeavors. Moreover, methods to reduce these instabilities need to be investigated. 
 
To tackle the challenge of sensitivity to initial conditions of the Gibbs sampler, we systematically adjusted the convergence 
criterion. While McNeish and Hamaker4 used an upper bound on the number of iterations as the convergence criterion, our 
investigation revealed that transitioning to PSRF thresholds results in diminished parameter variability. Going beyond the 
traditional recommendations of PSRF thresholds between 1.1 and 1.05, we employed stricter convergence thresholds of 1.01 and 
1.005. To assess statistical significance of the reduced variability in the parameter we used Bartlett’s test for the equality of 
variances. Benjamini—Hochberg false discovery rate correction was used to address multiple comparisons. PSRF 1.01 and 
PSRF 1.005 significantly reduced variability in the parameter estimate in comparison to PSRF 1.05, as well as when the number 
of iterations was set to 10000 and 30000. 
 
For a model as complex as TIC DSEM, which involves sampling from a complex posterior distribution, it is crucial to allow 
sufficient time for accurate exploration of the space. While more exploration of this complicated parameter space will allow more 
robust estimates, there is a trade-off between computational time and accuracy. Opting for a stringent threshold like 1.005 
demands three times more computational time for convergence than a comparatively lenient threshold like 1.01. While the more 
stringent threshold will provide more robust estimates, the substantial increase in computational time makes it a less optimal 
choice. Consequently, we conclude that for the dataset at hand, a threshold value of 1.01 provides the best balance between 
robustness and computational efficiency. As DSEM gains traction in applied research, future investigators need to be mindful of 
these considerations and select the threshold that aligns best with their data. 
 

PSRF 1.1 -1.66 -1.50 1.37 -2.45 -0.74 

PSRF 1.05 -1.63 -1.53 1.15 -2.31 -0.86 

PSRF 1.01 -1.65 -1.58 0.79 -2.10 -1.15 

PSRF 1.005 -1.65 -1.61 0.60 -2.00 -1.26 

Iterations 1000 -1.48 -1.32 1.36 -2.23 -0.73 

Iterations 10000 -1.63 -1.53 1.15 -2.31 -0.86 

Iterations 30000 -1.63 -1.53 1.15 -2.31 -0.86 
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CONCLUSION 
This study explored Dynamic Structural Equation Models’ robustness in parameter estimation, emphasizing its utility in studying 
time-invariant covariates within intensive longitudinal data. While DSEM provides a powerful tool for researchers to investigate 
complex behavioral dynamics, our paper reveals issues in the modeling framework that need to be accounted for. This was an 
initial investigation into the stability and replicability of DSEM on a simulated dataset. We discovered that a small subset of 
parameters is highly sensitive to initial conditions of the estimator. To address this lack in robustness and avoid local solutions, we 
propose transitioning to more stringent convergence thresholds. However, this comes at the cost of computational time. For the 
dataset used in this paper, a threshold of 1.01 is recommended to strike the best balance between robustness and efficiency. This 
underscores the necessity of researchers to be aware of the various challenges inherent to this novel framework. 
 
While we have highlighted certain concerns within the DSEM framework, it needs to be emphasized that DSEM has immense 
potential in refining our understanding of dynamic human behavior as it unravels over time. Compared to other models in the 
literature like Autoregressive Cross Lagged (ARCL), DSEM does a better job in modeling co-developmental trajectories of 
psychological phenomena.3,21 We encourage researchers to use DSEM in their endeavors, but with a recommendation to adhere 
to best practices that help navigate the associated challenges. In light of our analyses, we propose prioritizing the PSRF 
convergence criterion over criteria involving the number of iterations of the Gibbs sampler. Additionally, smaller PSRF values (  
1.01) can yield more stable estimates, but the computational efficiency needs to be considered. Above all, we stress the 
importance of examining DSEM’s estimates carefully before drawing conclusions. One may use different seed values for the 
estimation to test the robustness of the parameter estimates. However, there may be other and more effective ways of validating 
the results.  
 
This study serves as an initial foray into the DSEM framework and is not meant to be comprehensive. There are a multitude of 
directions for future work some of which we mention here. We used a simulated dataset where the generating model was known. 
We acknowledge that our findings may be specific to this dataset, where the generating model was known. Future research would 
do well to explore simulations with different generating models to investigate if such issues consistently arise across datasets. Real 
world datasets, where the underlying model is unknown and complex, may present new challenges. Investigating if and how 
parameter instabilities show up under these real-world situations could yield valuable insights into the practical applications of 
DSEM. While this study unearthed the presence of instabilities in certain parameter estimates, we were not able to shed light on 
their underlying reasons. Simulations attempting to resolve these mysteries are highly recommended. Another promising direction 
of work lies in the exploration of priors for DSEM. We employed non-informative priors for our study. Future investigations 
could explore the sensitivity of parameters to mildly informative priors, as such adjustments might influence the posterior 
distribution, mitigate instabilities or improve computational efficiency. These are a few of the many avenues where more work 
needs to be done. Additionally, this study raised questions about the impact of Bayesian estimation in Mplus for the 
implementation of DSEM. Alternative software packages like JAGS/STAN should be considered to fit these models and test 
their robustness. At this point in time, DSEM can only be implemented in Mplus, opening up myriad opportunities for 
methodologists to build packages aimed at fitting these models. This is an ongoing quest for improvement that aims to empower 
researchers with a more robust and versatile tool to study human psychology. We hope that this study is just the first of many 
papers aimed at enhancing the DSEM framework. 
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PRESS SUMMARY 
Dynamic Structural Equation Models (DSEM) have been widely advertised as a powerful and versatile modeling technique that 
can shed light on enduring inquiries in the field of psychology. However, our work has unearthed some disconcerting issues in the 
modeling framework. Turns out DSEM produces estimates that are very unstable and sensitive to arbitrary initializations of its 
estimation procedure. Its erroneous results can mislead applied researchers to form wrong conclusions from their data. Therefore, 
it is pivotal that researchers are not left uninformed of these concerns. The study exposes these shortcomings and offers 
directions for best practice to navigate the deficiencies for anyone who wishes to use DSEM in their work.  


