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ABSTRACT
The conversation of how to maximize the minimum distance between points - or, equivalently, pack congruent circles
- in an equilateral triangle began by Oler in the 1960s. In a 1993 paper, Melissen proved the optimal placements of 4
through 12 points in an equilateral triangle using only partitions and direct applications of Dirichlet’s pigeon-hole prin-
ciple. In the same paper, he proposed his conjectured optimal arrangements for 13, 14, 17, and 19 points in an equilat-
eral triangle. In 1997, Payan proved Melissen’s conjecture for the arrangement of fourteen points; and, in September
2020, Joos proved Melissen’s conjecture for the optimal arrangement of thirteen points. These proofs completed the op-
timal arrangements of up to and including fifteen points in an equilateral triangle. Unlike Melissen’s proofs, however,
Joos’s proof for the optimal arrangement of thirteen points in an equilateral triangle requires continuous functions and
calculus. I propose that it is possible to continue Melissen’s line of reasoning, and complete an entirely discrete proof
of Joos’s Theorem for the optimal arrangement of thirteen points in an equilateral triangle. In this paper, we make
progress towards such a proof. We prove discretely that if either of two points is fixed, Joos’s Theorem optimally places
the remaining twelve.
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INTRODUCTION
Packing is a class of optimization problems. The objective is to place some number of non-overlapping geometric ob-
jects such that they are entirely contained in a larger object leaving as little space remaining in the larger object as pos-
sible. Packing problems have an expansive history beginning from when Kepler conjectured the density of the densest
ball packing in 1611.1 In this paper, we consider the problem of packing thirteen congruent circles in an equilateral tri-
angle. It is important to note here the relationship between the problem of packing thirteen congruent circles into an
equilateral triangle and maximizing the minimum distance between thirteen points in an equilateral triangle. As Fig-
ure 1 below shows, the centers of the circles in the optimal packing of thirteen congruent circles in the larger triangle
are the points that maximize the minimum distance between thirteen points in the smaller triangle. Thus, these are the
same problem.

The two interpretations of the problem lead to different applications. By looking at the problem as a packing of circles,
we answer questions along the lines of how large a box needs to be in order to hold n bottles of water. By considering
the problem in terms of maximizing the distance between points on a plane, we solve problems like how to optimally
place transistors onto a microchip. Throughout this paper, we will consider the problem in terms of maximizing the
minimum distance between thirteen points in an equilateral triangle.
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Figure 1. An equilateral triangle with optimal point packing within an equilateral triangle with optimal circle packing

Figure 2. Optimal configuration of thirteen points in an equilateral triangle

Configurations that maximize the minimum distance between n points in an equilateral triangle have been proven for
n ≤ 12,2, 3 n = 14, 20,4 n = k(k+1)/2 for any k ∈ N , 5 and now n = 13.6 k(k+1)/2 is the kth triangular number, and
the optimal packing is the obvious one: in rows of 1, 2, 3, ..., k points. The proof for n = 13 was completed by Joos in
2020, confirming Melissen’s 1993 conjecture that the orientation of thirteen points in an equilateral triangle shown in
Figure 2 uniquely maximizes the minimum of the distance between two points.2 In other words, no other configura-
tion of thirteen points in an equilateral triangle exists such that the distance between every pair of points is more than
or equal to the minimum distance between the points in Figure 2. We will denote this minimum distance as d13.

Joos’s proof for the optimal configuration of thirteen points in an equilateral triangle diverged from the strategies that
had been used previously to find optimal configurations of points in equilateral triangles. Rather than using only dis-
crete mathematics, his proof requires continuous functions and calculus, relies heavily on inequalities, and considers
several cases. This paper explores the possibility of an entirely discrete proof of the optimal arrangement of thirteen
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points in an equilateral triangle. We demonstrate that if one can prove that an optimal placement of thirteen points
must include N1 or N2 from Figure 2 then we would have an alternate and discrete proof that the Melissen placement
of points its optimal. Determining whether the methods that had worked for proving the optimal arrangements of
fewer points are still valid for thirteen points could influence whether people must search for new approaches as the
number of points continues to increase.

Joos computes d13 = 9 − 5
√
3 − 7

√
6

2 + 6
√
2 ≈ 0.251813 for a triangle with side length 1.6 Pairs of points in Figure 2

above whose distance is d13 are connected by a grey line.

RESULTS
We know from Melissen’s 1993 paper that the configuration of points shown in Figure 2 exists such that pairs of points
connected by a grey line in the figure are d13 apart.2 From there, his conjecture states that this configuration is both
optimal and unique, meaning that there is no other configuration of thirteen points in an equilateral triangle such that
every pair of points is more than or equal to d13 apart. We will prove two theorems: one showing that if we assume
the position of N1 from Figure 2, then Joos’s Theorem for thirteen points holds; and the other showing that if we as-
sume the position of N2, then Joos’s Theorem holds as well.

We first note that Melissen proved the following lemma:

Lemma. In an optimal configuration of n ≥ 3 points in an equilateral triangle, the three vertices of the triangle must
be among the selected points.3

Theorem 1. LetN1 from Figure 2 be the point that is d13 from each of the points on adjacent sides of the triangle that are d13
from the top corner. IfN1 is fixed, then Joos’s Theorem for the optimal arrangement of 13 points is correct.

In other words, given the position of N1, there is no arrangement of the remaining twelve points in the triangle other
than the arrangement shown in Figure 2 such that every pair of two of the thirteen points is at least d13 apart. We
first realize that for such a configuration to exist, it cannot contain any other points in the interior of a circle with ra-
dius d13 centered at N1. As Figure 3 shows, this creates two distinct regions: the region above the circle about N1 and
the region below. We will begin by examining the upper region.

Figure 3. Equilateral triangle with a circle of radius d13 about N1

Given our definition of N1 and as Figure 4 illustrates, the intersection of the interiors of circles of radius d13 about
each of the three corners of the upper region contain every point except the three corners. Thus we know that every
point other than the corners is less than d13 every other point in the region. So in order for there to be at least two
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points in this region whose distance apart is at least d13, those points must be the corners. This also shows that we can
include at most three points in this region. We can achieve this only by placing them in the corners, so the arrange-
ment of three points in this region is unique. Since we can fit at most three points in this region, we must put at least
nine points in the lower region.

Figure 4. Equilateral triangle with upper region outlined

The decomposition shown in Figure 5 partitions the lower region into eight subregions: the interiors of circles with
radius d13 about U and Z (the highest points in the lower region), the interiors of the circles with radius d13 about the
bottom corners, the interiors of the circles with radius d13 about V and T (the intersection points for the first two cir-
cles) minus the first two circles, and then the remaining space split symmetrically down the center. The lower region
includes its upper boundary, so each of the five arcs that make up this boundary are included in their respective subre-
gions. The purple and orange subregions include their boundaries except where they intersect with brown subregions;
these intersections belong to the brown subregions. The brown subregions include their boundaries except where they
intersect with the blue subregions. The blue subregions include their entire boundaries.

Since there are nine points, without loss of generality, we must place five left of and including the center. There are
five points to place in four subregions. Thus, at least one subregion must have at least two points. Since the circular re-
gions do not include their entire boundaries, they cannot fit more than one point. We take a closer look at the region
outlined in blue from Figure 5 in Figure 6 below.

Figure 6 shows the region outlined in blue along with a circle of radius d13 about each of its corners. The circles about
the corners of the region - N2, H1, G1, and M1 - are green, pink, orange, and brown respectively. Since the pink and
brown circles contain the entire region, it is clear that any point in the blue region is less than d13 from H1 and M1.
From Melissen’s orginal paper, we know that N2 (the point d13 from and directly below N1 ) and G1 (the point d13
from V on the side of the triangle) are d13 apart.2 Thus, the only way to fit two points in this region is at N2 and G1.

We have established that the only subregion from Figure 5 that can fit two points is the blue region and we cannot fit
three points in any subregion. So we must put two points in the blue subregion at N2 and G1 and one point in each
of the other subregions. We know from our lemma that there must be a point at A3 (the corner). Now the only point
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Figure 5. Decomposition of lower region of equilateral triangle

Figure 6. Blue subregion with circles about each corner

in the brown subregion that is d13 from G1 and A3 is V so we must place the next point there. The only point in the
purple region that is d13 from V is U , so a point belongs there as well. By the same argument, the points on the right
side must be placed in the corresponding locations. We have shown that we can fit at most three points in the upper
region and nine points in the lower region and that the arrangements of points in both of those regions is unique, so
we have uniquely placed all twelve points. This concludes Theorem 1.

Theorem 2. LetN2 from Figure 2 be the point on the altitude from C1 that is d13 fromN1. IfN2 is fixed, then Joos’s Theorem
for the optimal arrangement of 13 points is correct.

In order to prove Theorem 2, we will first split the triangle into an upper and lower region and decompose the upper
region to show that we can fit at most five points in the upper region. We will then decompose the lower region into
identical halves, providing that one of these halves must contain four points. We will then show that an arrangement
of four points into one of the halves is unique. Fixing these points will further limit the arrangements of points in the
upper region, allowing us to change our decomposition and prove that we can actually only fit four points in the upper
region, so therefore, there are four points in the other half of the lower region as well. We will then prove that there
is a unique configuration of four points in the remaining half of the lower region and four points in the upper region,
thus giving a unique configuration of all of the remaining twelve points.
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Figure 7. Decomposition of an upper region of an equilateral triangle

In order to maintain at least d13 between each point, there cannot be another point within a circle of radius d13 cen-
tered at N2. Figure 7 draws a red curve along the boundary of the union of a circles of radius d13 about the points
N2, V and T from Figure 2. We will consider the region above and including the red curve - but excluding the points
U and Z - as the upper region, and the region below the red curve plus U and Z as the lower region.

Consider equilateral triangle �C1UZ outlined in black in Figure 7. We will first show that there can be at most four
points in this triangle excluding U and Z. Each side of this triangle has length 2d13 since the points are defined such
that B1 is d13 from C1 and U is d13 from B1. By Melissen’s proof optimizing six points in an equilateral triangle, we
can uniquely fit six points into this triangle such that no pair of points is less than d13 apart at C1, B1, J , U , Z, and
N1.2 Since this configuration is unique, if we exclude points U and Z from the region, we can no longer fit six points
in the triangle outlined in black. Furthermore, since the optimal configuration of five points in an equilateral triangle
requires five points from the configuration of the six points labeled in the region,2 removing those two points from
the region makes it so that we cannot fit five points d13 apart from one another either. Thus, in the equilateral triangle
outlined in black excluding U and Z, we can fit at most four points.

It follows that in order to fit six points in the upper region, we would need to put two points between the black trian-
gle and the red curve shaded in orange - one on each side of N1 since we cannot fit two points on either one side given
that N1 is d13 from U and Z. We will consider these two orange regions separated by N1.

In order for there to be a point in each of these regions, there can be no point in the intersection of the circles about
N1, U , and T1 and the intersection of circles about N1, U1, and Z all of radius d13, i. e. there can be no points below
the pink and brown regions in Figure 7. This is because any point that is in one of those intersections would be less
than d13 from every point in the corresponding orange region, and we have already established that there must be a
point in both regions for there to be six points in the whole upper region.
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We next show that we cannot fit four points in the union of the blue, pink, and brown regions. The blue region is
defined as the interior of a circle of radius d13 about C1, so there cannot be more than one point in this region. The
pink and brown regions can each also have at most one point. To understand why, keep in mind, we took B1, J, and
N1 from the optimal placement of six points in black equilateral triangle, so we know that they are d13 apart. We can-
not have a point at N1 because we know that there must be a point in each of the orange regions and U and Z are
excluded from those regions, so each of those regions contains a point less than d13 from N1. Thus, none of the blue,
pink, and brown regions can fit more than one point, so we can fit at most three points the union of these three re-
gions. Thus, there are at most five points in the upper region.

We now consider the lower region, which is below the red curve from Figure 7 and includes U and Z, but excludes
the interior of a circle of radius d13 about N2. Since we know we can only fit five points in the upper region, we must
fit seven points in this region. Without loss of generality, we must fit four point on the left side of this region.

Figure 8 decomposes the left side of this lower region into three subregions. We define the orange subregion as the in-
terior of a circle of radius d13 about U , the green subregion as the interior of a circle of radius d13 about A3 and the
brown as the remaining space. We know from Melissen’s paper that G1 and V are d13 apart.2 Thus, the orange and
green subregions can each contain at most one point and the brown subregion can contain at most two points uniquely
placed at G1 and V . Since we need to fit four points into these three subregions, we need to fit at least two points in at
least one of these subregions, so we must put points at G1 and V . The only way to put a point in each of the remain-
ing subregions is by putting them at A3 and U . Thus, the only possible configuration of four points on the left side of
this region are G1, V , A3, and U .

Figure 8. Decomposition of a left lower region of an equilateral triangle

Once we fix those four points, we cannot have any other points within d13 of any of them. In particular we cannot
have any point in the interior of the circle of radius d13 about U which is outlined in pink in Figure 9. With this in
mind, Figure 9 revises our decomposition of the upper region using circles of radius d13 about C1 and Z as bound-
aries of the regions. Note that Z is not in the upper region at all, N1 is in the red region, J is in the yellow region,
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and B1 is in the blue region. Since each region can contain at most one point, we can now conclude that there are at
most four points in this entire upper region. This means that there must also be four points in the right side of the
lower region. An analogous decomposition to that shown in Figure 8 shows that the points on the right side of the
lower region must be in analogous locations to those on the left: B3, S, T , and Z. In particular, there is a point at Z,
so the points in the red and yellow subregions in Figure 9 must be at N1 and J respectively. Fixing those points also
requires that the only points that can be placed in each of the other two regions are B1 and C1. This concludes the
unique configuration of the remaining twelve points.

Figure 9. Refined decomposition of the upper region of the equilateral triangle

DISCUSSION
The proofs provided in this paper bring us closer to a discrete proof of Joos’s Theorem for the optimal configuration
of thirteen points in an equilateral triangle. We have shown that if either of two points is fixed, then we have an al-
ternate proof of the Melissen configuration of thirteen points. We will now explore how one might begin proving the
position of N1 or N2.

Theorem 3. RecallN1 andN2 from Figure 2. LetK, T1 andW1, V1 be in the position thatN1 andN2 would be in if the
entire triangle was rotated about the center such that C1 was positioned at B3 and A3 respectively. Let regionH be the orange
hexagon from Figure 10 defined by T1, N1, V1,K,N2, andW1 including its boundary. If there are two points in this region
at least d13 apart, they must be at eitherN1 andN2,K and T1, orW1 and V1 (which by our definition are all the same pair of
points up to rotations of the triangle).

Since H is a convex hexagon and congruent across all three altitudes of the large triangle, proving Theorem 3 is equiva-
lent to proving that the distances from N1 to W1, N1 to K, and W1 to K are less than d13.

The point E in Figure 10 is the midpoint of the segment from C1 to A3 which is the side length of the triangle. As-
suming the triangle has side length 1, the segment from C1 to E is 0.5 in length. The segment between C1 and U from
Figure 2, on the other hand, has length 2d13 ≈ 0.503626. So E from Figure 10 is closer to B1 than U from Fig-
ure 2 is. Therefore the distance between E and N1 is less than d13 and equal to the distance between W1 and E since
W1 is the same distance from A3 as N1 is from C1. Thus, �EN1W1 is isosceles, so � EN1W1

∼= � EW1N1. Since
�C1UZ from Figure 2 is equilateral, � C1UN1 is 60°, so � C1EN1 in Figure 10 is greater than 60°as is � A3EW1.
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Thus, � N1EW1 is less than 60°, and therefore smaller than � V N1W1 and � EW1N1. So, the segment from W1 to N1

is less than that from E to N1 which is less than d13. We can generalize this argument to now say that the segments
from N1 to W1, N1 to K, and W1 to K are less than d13 since they are all the same pair of points up to rotations of
the triangle. This concludes Theorem 3.

Now in order to show that there are points at N1 and N2, we need only to show that there must be two points in H

because the only way to fit two points in H is by placing points N1 and N2, K and T1, or W1 and V1 which are all
the same pair of points up to rotations of the triangle.

Figure 10. Equilateral triangle with regions of emphasis outlined

In order to show that there are at least two points in H , we would first need to show that there must be at least one
point in H , meaning it is impossible to fit thirteen points outside of H that are at least d13 apart. We would then need
to show that given that there is a point within H , we cannot fit twelve points outside of H that are all at least d13
apart. The blue lines clearly partition H into six subregions. Because the six subregions are congruent, once we prove
that there is a point in H , we can assume without loss of generality that that point is in the bottom left subregion of
H , the triangle defined by the points F2,W1, N2 including the boundary.

If there is a point in that bottom left subregion of H , there cannot be another point that is less than d13 from all three
corners of the subregion or else it would be less than d13 from every point in the subregion. Thus, if there is a point
in the bottom left subregion of H , there cannot be any other point within the intersection of the circles of radius d13
about F2,W1 and N2 which is outlined in purple (excluding the boundary); we will call this region P . So in order to
complete the discrete proof of Joos’s Theorem, all that remains to be proven is that we cannot place thirteen points
outside of H and that we cannot fit twelve points outside of the union of H and P .
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CONCLUSIONS
This paper makes progress towards a discrete proof for the optimal orientation of thirteen points in an equilateral trian-
gle by proving that if either of two points is fixed, the other twelve are positioned in accordance with Joos’s Theorem.
Finding that such a proof exists could influence how mathematicians approach similar packing problems. It is also in-
teresting to note that 13, along with 8 and 19 can be expressed as k(k+1)

2 − 2 or k(k+1)
2 +2k+1 depending on the value

of k. The first representation shows us that these values are two less than triangular numbers (which are expressed as
k(k+1)

2 ), but the second makes sense of the arrangement of the points. Melissen’s proof for the optimal configuration of
n = 8 points, and in his conjectures for n = 13 and n = 19, all have very similar arrangements. They all have an up-
per region where the points are arranged as an equilateral triangle with a triangular number of points (that corresponds
with the first term of the expression). A discrete proof for n = 13 could make leeway for a general proof for all n that
are two less than a triangular number.
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PRESS SUMMARY
How large is the smallest computer chip that contains n transistors that must be some distance apart from one an-
other? How big must a crate be in order to hold n jugs of water? These questions ask how we can maximize the ben-
efit of costly or harmful materials and provide insight on how we can drive technology and innovation forward. Math-
ematically, these and many more questions are the same. This paper furthers the discussion of solving these types of
problems.


