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ABSTRACT 
Organoboron compounds are extensively used in organic synthesis. The alkenylboronic acid pinacol esters formed from the 
hydroboration reaction of alkynes with pinacolborane are stable, easy to handle, and useful in many synthetic transformations. 
However, pinacolborane lacks the reactivity necessary to undergo facile hydroboration reaction with terminal aromatic alkynes. 9-
Borobicyclo[3.3.1]nonane (9-BBN) can be used to catalyze the hydroboration reaction of phenylacetylene with pinacolborane. 
The hydroboration reaction parameters and product purification conditions were evaluated to maximize the yield of (E)-2-
phenylethenylboronic acid pinacol ester. It was found that the optimal reaction conditions for the 9-BBN-catalyzed hydroboration 
of phenylacetylene with pinacolborane were: phenylacetylene (1.0 equiv), pinacolborane (1.2 equiv), 9-BBN (20 mol%), and THF 
[0.2] at 65 °C. The compatibility of these reaction conditions with p-substituted terminal aromatic alkynes bearing electronically 
diverse groups was studied. Moderate to good yield (49–76%) of the hydroboration products were isolated after purification by 
liquid-liquid extraction and flash chromatography. 
 
KEYWORDS 
Organic Synthesis; Catalysis; Methods Development; Hydroboration; Reaction Optimization; Alkenylboronic Ester; Alkyne; 
Pinacolborane; 9-Borobicyclo[3.3.1]nonane 

 
INTRODUCTION 
Boron containing organic compounds are useful reagents in the synthesis of important carbon-containing medicines, materials, 
and fine chemicals. The utility of these reagents is evident from the variety of bonds, and therefore functional groups, which can 
be substituted for the C–B bond. For example, the hydroboration-oxidation reaction of an alkene ultimately transforms the C–B 
bond into a C–O bond.1 The C–B bond can be substituted for a C–H bond by protonolysis,2 or a C–X bond by halogenation.3 In 
addition, the use of transition-metal catalysis has allowed for the substitution of a C–B bond for a C–C,4, 5, 6, 7 C–H,8, 9 C–N,10, 11, 12, 

13, 14 C–O,15, 16, 17 C–P,18, 19 or C–S bond,20, 21 and include asymmetric variants.22 
  
The hydroboration reaction of unsaturated organic substrates with hydroboron reagents is a straight-forward method to prepare 
alkyl- and alkenylboron compounds. An early example of the hydroboration reaction of alkenes was reported by Brown in 1956.1, 

23 In 1966, Woods and Strong reported that alkynes undergo sluggish hydroboration with 4,4,6-trimethyl-1,3,2-dioxaborinane in a 
sealed tube of superheated ether to provide the alkenylboron products in low yield.24 Chemists have sought to catalyze the 
hydroboration reaction with transition metals,25, 26, 27, 28, 29, 30, 31, 32 and alkaline earth metals,33, 34 aluminum,35, 35, 36, 37 base,38, 39 N,N-
dimethylacetamide,40 and benzoic acid derivatives.41, 42 Boron reagents are also known to catalyze the hydroboration reaction.43, 44, 

45, 46, 47, 48 In 1990, Periasamy et al. reported that a BH3·N,N-diethylaniline complex could catalyze the hydroboration of terminal 
alkynes with catecholborane.43 Hoshi et al. later reported that dicyclohexylborane could catalyze the hydroboration reaction of 
terminal alkynes with pinacolborane in good to excellent yield.44  
 
Our interest in the hydroboration reaction originated with the need to synthesize (E)-2-phenylethenyl boronic acid pinacol ester 
(E)-3a (Scheme 1) for use as an organometallic donor in Suzuki-Miyaura cross-coupling reactions.7 The reagent (E)-3a could be 
synthesized by hydroboration reaction with catecholborane followed by diol exchange with pinacol.51 However, the use of 
catecholborane is not ideal. For example, catechol is sensitive to oxidation, and the catecholborane product can decompose upon 
exposure to air or moisture.52 To avoid the use of catechol, a direct hydroboration reaction of 1a with pinacolborane 4 was 
sought. The reagent 4 is commercially available and more stable than catecholborane. Although the increased stability of 4 also 
lessens its reactivity in the hydroboration reaction. For example, the hydroboration reaction of 1a (1 equiv) with 4 (1.2 equiv) is 
sluggish in refluxing THF (65 °C), and only trace amounts of product (E)-3a was observed after 7 h vide infra. It was found that 9-
borobicyclo[3.3.1]nonane (9-BBN) could be used to catalyze the hydroboration reaction of 1a with 4.7 The initially evaluated 
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reaction conditions were determined to be satisfactory at the time and were not optimized. The reaction parameters and 
purification conditions have since been studied in detail and are described here. 
 

 
Scheme 1. 

 
RESULTS AND DISCUSSION 
This study began with the use of the previously published reaction conditions: 1a (1.0 equiv), 4 (1.0 equiv), 9-BBN (10 mol%) in 
refluxing 0.2 M THF solution (Table 1).7 On a 1 mmol scale, the hydroboration product (E)-3a was isolated from this reaction as 
a slightly yellow oil in 62% yield after purification by liquid-liquid extraction and flash chromatography (entry 1). The effect of 
reagent stoichiometry on the yield of (E)-3a was then evaluated. Increasing the amount of 4 to 1.2 equiv increased the yield to 
73% (entry 2). Further increasing the amount of 4 to 1.4 equivalents decreased the yield of (E)-3a (entry 3). The use of excess 1a 
(1.2 equiv) and 4 (1.0 equiv) as the limiting reactant provided a 69% yield of (E)-3a (entry 4). A range from 0-30 mol% of 9-BBN 
was tested, and 20 mol% was found to provide the highest yield of (E)-3a (entries 12-15). 
 
The reaction parameters of concentration, temperature, and a NaOH additive were also evaluated. It was found that 
concentrations between 0.2 M and neat49 caused little change in the amount of (E)-3a that was isolated (entries 5–7). However, a 
more dilute reaction (0.04 M) produced significantly less (E)-3a (entry 5). Toluene and 1,4-dioxane were evaluated as solvent and 
were found to provide a lower yield than when THF was used as the reaction solvent (entries 10 and 11). A decreased reaction 
temperature resulted in a decreased yield of (E)-3a (entry 8). An increased reaction temperature resulted in an increased yield of 
(E)-3a when 1,4-dioxane was used as solvent (entries 9 and 10). However, the yield of (E)-3 was higher when the reaction was run 
in THF at 65 °C than when the reaction was run in 1,4-dioxane at 85 °C (compare entries 2 and 10). The addition of NaOH (5 
mol%) resulted in a slightly decreased yield of (E)-3a (entry 16).38  
 
Various stationary phases were evaluated for the purification of (E)-3a by flash chromatography. The use of a boric acid capped 
silica provided a negligible difference in yield and purity as determined by 1H NMR (entry 17).50 The crude product (E)-3a was 
entirely lost when the flash chromatography was conducted with a dry, neutral alumina stationary phase (entry 18). 
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Table 1. Evaluation of the reaction parameters of the 9-BBN-catalyzed hydroboration reaction of 1a with 4. 

 
entry HB(pin), mmol 9-BBN, mol% solvent, conc. temp., °C yield,a % 

1 1 10 THF, 0.2 65 62 
2 1.2 10 THF, 0.2 65 73 
3 1.4 10 THF, 0.2 65 67 
4b 1 10 THF, 0.2 65 69 
5 1.2 10 THF, 0.04 65 53 
6 1.2 10 THF, 1.0 65 71 
7 1.2 10 neatc 65 69 
8 1.2 10 THF, 0.2 45 54 
9 1.2 10 dioxane, 0.2 65 48 
10 1.2 10 dioxane, 0.2 85 59 
11 1.2 10 toluene, 0.2 65 54 
12 1.2 – THF, 0.2 65 0d 
13 1.2 5 THF, 0.2 65 46 
14 1.2 20 THF, 0.2 65 76 
15 1.2 30 THF, 0.2 65 71 
16e 1.2 10 THF, 0.2 65 66 
17f 1.2 10 THF, 0.2 65 63 
18g 1.2 10 THF, 0.2 65 0 

aYield of isolated, purified product. 
b1.2 equiv of phenylacetylene was used. 
c9-BBN was used as a 0.5 M solution in THF. The final reaction concentration was 2.5 M. 
dNo product was observed after 7 h. 
eNaOH (5 mol%) was added as a co-catalyst. 
fBorated silica was used as the chromatography stationary phase. 
gDry, neutral alumina was used as the chromatography stationary phase 

 
The optimized reaction conditions of 1 (1.0 equiv), 4 (1.2 equiv), 9-BBN (20 mol%), and THF [0.2] at 65 °C were then used to 
evaluate the scope of compatible p-substituted terminal aromatic alkynes 1a–e. The electronically neutral parent alkyne 1a 
provided the highest yield (76%) and was found to react the fastest under the optimized reaction conditions (entry 1). Substrates 
with electron-donating methyl and methoxy groups provided a good yield of the desired products (E)-3b and (E)-3c (entries 2 
and 3). A substrate bearing an electron-withdrawing methyl ester group provided the lowest yield of the substrates evaluated 
(entry 4). The good yield of the bifunctional, 4-bromo derivative (E)-3e is especially interesting because it could be used as an 
organic electrophile or organometallic donor in a Suzuki-Miyaura cross-coupling reaction. Complete control of the alkene 
geometry of (E)-3a–e was observed by 1H NMR spectroscopy in all of the cases studied. 
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Table 2. Evaluation of the optimized reaction conditions with 1a and electronically diverse p-substituted terminal aromatic 
alkynes 1b–1e. 

 
entry product yield % reaction time (h) 

1 

 

76% 1.5 

2 

 

64% 2 

3 63% 3 

4 

 

49% 7 

5 

 

72% 3 

 
METHODS AND PROCEDURES 
General Procedure: An oven-dried, round-bottom flask equipped with a magnetic stir-bar was fitted with an oven-dried Liebig 
condenser and sealed with high-vacuum grease. The reflux apparatus was capped with a septum and purged with a balloon of 
argon that was introduced and evacuated through a needle for 15 minutes. The following were added sequentially by syringe 
under a balloon of argon: the terminal aromatic alkyne, pinacolborane, 9-BBN ([0.5] in THF), and finally a small portion of 
solvent to wash all of the reagents into the round-bottomed flask. The reaction solution was refluxed in a preheated oil bath at 65 
°C. Reaction aliquots were analyzed by thin-layer chromatography (TLC) to monitor the disappearance of the alkyne starting 
material. When the reaction was determined to be complete, it was cooled to room temperature, extracted with ethyl acetate, 
washed with water, brine, dried with sodium sulfate, filtered and concentrated by rotary evaporation (50 °C, 2 torr). The crude 
product was purified by flash chromatography on silica. The amount of silica used in the chromatography was approximately 65 
times the mass of the concentrated crude product. The eluent began with 98.5:1.5, hexane/ethyl acetate and increased to 95:5, 
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hexane/ethyl acetate until the product was completely eluted. The product was concentrated in vacuo (2 torr) to afford the desired 
product. 
 
Procedure for the Synthesis of 4,4,5,5-Tetramethyl-2-[(1E)-2-phenylethenyl]-1,3,2-dioxaborolane ((E)-3a) 

 
Following the General Procedure, phenylacetylene (110 L, 1.0 mmol, 1.0 equiv), pinacolborane (174 L, 1.2 mmol, 1.2 equiv), 9-
BBN (0.400 mL, [0.5], 0.2 mmol, 0.2 equiv), and THF (5 mL) were combined and heated to 65 °C for 1.5 h. Purification by 
aqueous workup and flash chromatography afforded 175 mg (76%) of (E)-3a as a slightly yellow oil.38 
 
Data for 4,4,5,5-Tetramethyl-2-[(1E)-2-phenylethenyl]-1,3,2-dioxaborolane ((E)-3a): 
 1H NMR: (400 MHz, CDCl3) 
  7.48–7.45 (m, 2 H), 7.40 (d, J = 18.5, 1 H), 7.33–7.23 (m, 3 H) 6.17 (d, J = 18.5, 1 H), 1.29 (s, 12 H). 
 13C NMR: (101 MHz, CDCl3) 
  149.5, 137.5, 128.9, 128.6, 127.1, 83.4, 24.9. 
 IR: (neat) 

3080 (w), 3054 (w), 3018 (w), 2978 (w), 2928 (w), 1623 (m), 1577 (w), 1495 (w), 1450 (m), 1391 (m), 1371 (m), 
1346 (s), 1322 (s), 1271 (m), 1237 (m), 1210 (m), 1142 (s), 1109 (w), 997 (m), 969 (m), 899 (m), 851 (m), 748 
(m), 692 (m), 660 (w), 641 (w).  

 MS: (EI, 70 eV) 
230 ([M], 49), 229 (12), 215 (24), 157 (11), 145 (38), 144 (69), 143 (10), 131 (56), 130 (100), 129 (92), 118 (16), 
114 (14), 105 (31), 104 (15), 103 (16), 85 (10), 78 (12), 77 (21). 

 TLC: Rf 0.53 (hexane/ethyl acetate, 95:5) [silica gel, aqueous KMnO4] 
 
Procedure for the Synthesis of 4,4,5,5-Tetramethyl-2-[(1E)-2-(4-methylphenyl)ethenyl]-1,3,2-dioxaborolane ((E)-3b) 

 
Following the General Procedure, 4-tolylacetylene (127 L, 1.0 mmol, 1.0 equiv), pinacolborane (174 L, 1.2 mmol, 1.2 equiv), 9-
BBN (0.400 mL, [0.5], 0.2 mmol, 0.2 equiv), and THF (5 mL) were combined and heated to 65 °C for 2 h. Purification by 
aqueous workup and flash chromatography afforded 157 mg (64%) of (E)-3b as a slightly yellow oil.37 
 
Data for 4,4,5,5-Tetramethyl-2-[(1E)-2-(4-methylphenyl)ethenyl]-1,3,2-dioxaborolane ((E)-3b) 
 1H NMR:  (400 MHz, CDCl3) 

7.40–7.38 (m, 2 H), 7.38 (d, J = 18.5, 1 H), 7.15–7.13 (m, 2 H), 6.11 (d, J = 18.5, 1 H), 2.34 (s, 3 H), 1.31 (s, 12 
H). 

 13C NMR:  (101 MHz, CDCl3) 
  149.6, 139.1, 134.9, 129.4, 127.2, 83.4, 25.0, 21.5. 
 IR: (neat)  

2976 (w), 2926 (w), 1625 (m), 1569 (w), 1511 (w), 1479 (w), 1451 (w), 1411 (w), 1379 (m), 1370 (m), 1345 (m), 
1320 (s), 1285 (w), 1264 (w), 1220 (w), 1204 (w), 1178 (w), 1165 (w), 1138 (s), 1109 (m), 1019 (s), 999 (m), 969 
(m), 950 (w), 901 (w), 853 (w), 843 (m), 829 (w), 796 (s), 759 (w), 712 (w), 676 (w), 659 (w), 642 (w), 580 (w), 
517 (w), 492 (m), 453 (w). 

 MS: (EI, 70 eV) 
245 ([M+1]+, 12), 244 ([M]+, 69), 243 ([M-1]+, 17), 229 (21), 171 (12), 159 (40), 158 (54), 145 (38), 144 (92), 143 
(100), 132 (19), 128 (47), 127 (13), 119 (17), 118 (12), 117 (43), 116 (29), 115 (36), 91 (18), 43 (15), 41 (17), 40 
(11). 

 TLC: Rf 0.42 (hexane/ethyl acetate, 95:5) [silica gel, aqueous KMnO4] 
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Procedure for synthesis of 2-[(1E)-2-(4-Methoxyphenyl)ethenyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((E)-3c) 

 
Following the General Procedure, 4-ethynylanisole (130 mg, 1.0 mmol, 1.0 equiv), pinacolborane (174 L, 1.2 mmol, 1.2 equiv), 
9-BBN (0.400 mL, [0.5], 0.2 mmol, 0.2 equiv), and THF (5 mL) were combined and heated to 65 °C for 3 h. Purification by 
aqueous workup and flash chromatography afforded 132 mg (51%) of (E)-3c as a slightly yellow oil.46 
 
Data for 2-[(1E)-2-(4-Methoxyphenyl)ethenyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((E)-3c) 
 1H NMR: (400 MHz, CDCl3) 

7.45–7.42 (m, 2 H), 7.35 (d, J = 18.4, 1 H), 6.88–6.85 (m, 2 H), 6.01 (d, J = 18.4, 1 H), 3.81 (s, 3 H), 1.31 (s, 12 
H). 

 13C NMR: (101 MHz, CDCl3) 
  160.4, 149.2, 130.6, 128.6, 114.1, 83.4, 55.4, 25.0. 
 IR: (neat)  

2976 (w), 2932 (w), 2836 (w),1697 (w), 1624 (w), 1624 (w), 1603 (m), 1575 (w), 1509 (m), 1457 (w), 1379 (w), 
1370 (w), 1351 (m), 1319 (m), 1303 (m), 1291 (w), 1250 (m), 1210 (m), 1194 (w), 1170 (m),1140 (m), 1105 (w), 
1032 (m), 995 (w), 969 (m), 900 (w), 852 (m), 814 (m), 758 (w), 734 (w), 720 (w), 699 (w), 675 (w), 644 (w), 607 
(w), 607 (w), 597 (w), 578 (w), 541 (w), 519 (m), 450 (w). 

 MS: (EI, 70 eV) 
261 ([M+1]+, 17), 260 ([M]+, 100), 259 ([M-1]+, 24), 245 (17), 175 (30), 174 (19), 161 (45), 160 (78), 159 (47), 
148 (15), 146 (10), 145 (23), 144 (99), 143 (28), 135 (15), 121 (16), 117 (24), 77 (12), 43 (13), 41 (15), 40 (14). 

 TLC:  Rf 0.26 (hexane/ethyl acetate, 95:5) [silica gel] 
 
Procedure for the Synthesis of 4-[(1E)-2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)ethenyl]benzoic acid methyl ester ((E)-3d) 

 
Following the General Procedure, methyl 4-ethynylbenzoate (160 mg, 1.0 mmol, 1.0 equiv), pinacolborane (174 L, 1.2 mmol, 1.2 
equiv), 9-BBN (0.400 mL, [0.5], 0.2 mmol, 0.2 equiv), and THF (5 mL) were combined and heated to 65 °C for 7 h. Purification 
by aqueous workup and flash chromatography afforded 149 mg (52%) of (E)-3d as off-white crystals.46 
 
Data for 4-[(1E)-2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)ethenyl]benzoic acid methyl ester ((E)-3d) 
 1H NMR: (400 MHz, CDCl3) 
  8.00–7.98 (m, 2 H), 7.53–7.51 (m, 2 H), 7.40 (d, J = 18.4, 1 H), 3.89 (s, 3 H), 1.30 (s, 12 H). 
 13C NMR: (101 MHz, CDCl3) 
  166.8, 148.2, 141.8, 130.2, 130.0, 127.0, 83.6, 52.2, 24.9. 
 IR: (neat)  

2975 (w), 2950 (w), 2931 (w), 2848 (w), 1712 (s), 1672 (w), 1627 (m), 1605 (m), 1566 (w), 1487 (w), 1441 (m), 
1413 (w), 1380 (w), 1368 (m), 1349 (s), 1319 (s), 1275 (s), 1214 (m), 1195 (m), 1173 (m), 1149 (m), 1111 (s), 
1015 (w), 1002 (m), 972 (m), 902 (w), 872 (m), 855 (m), 844 (m), 835 (m), 804 (w), 758 (s), 703 (m), 690 (m), 
667 (w), 652 (w), 638 (m), 630 (m), 579 (w), 518 (w), 508 (m), 487 (w), 479 (w), 451 (w). 

 MS: (EI, 70 eV) 
288 ([M]+, 49), 287 ([M-1]+, 15), 273 (32), 257 (19), 203 (29), 202 (57), 189 (20), 188 (30), 187 (53), 176 (18), 172 
(13), 171 (15), 158 (11), 157 (100), 156 (32), 143 (45), 130 (11), 129 (39), 128 (17), 77 (29), 59 (15), 43 (20), 41 
(21). 

 MP: 108-109 °C 
 TLC: Rf 0.18 (hexane/ethyl acetate, 95:5) [silica gel, aqueous KMnO4] 
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Procedure for the Synthesis of 2-[(1E)-2-(4-Bromophenyl)ethenyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((E)-3e) 

 
Following the General Procedure, 1-bromo-4-ethynylbenzene (309 mg, 1.0 mmol, 1.0 equiv), pinacolborane (174 L, 1.2 mmol, 
1.2 equiv), 9-BBN (0.400 mL, [0.5], 0.2 mmol, 0.2 equiv), and THF (5 mL) were combined and heated to 65 °C for 3 h. 
Purification by aqueous workup and flash chromatography afforded 220 mg (71%) of (E)-3e as white crystals.37  
 
Data for 2-[(1E)-2-(4-Bromophenyl)ethenyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((E)-3e) 
 1H NMR: (400 MHz, CDCl3) 
  7.47–7.44 (m, 2 H), 7.36–7.32 (m, 2 H), 7.32 (d, J = 18.5, 1 H), 6.14 (d, J = 18.5, 1 H), 1.31(s, 12 H). 
 13C NMR: (101 MHz, CDCl3) 
  148.2, 136.6, 131.9, 128.7, 123.0, 83.6, 25.0. 
 IR: (neat) 

3087 (w), 3059 (w), 3046 (w), 3007 (w), 2973 (w), 2929 (w), 2290 (w), 1906 (w), 1701 (w), 1624 (m), 1583 (w), 
1564 (w), 1486 (m), 1467 (w), 1401 (m), 1378 (w), 1370 (w), 1343 (m), 1319 (s), 1301 (m), 1296 (m), 1268 (m), 
1209 (m), 1165 (w), 1138 (m), 1110 (m), 1067 (m), 1006 (m), 991 (m), 968 (m), 952 (w), 899 (w), 852 (m), 820 
(w), 799 (s), 706 (w), 693 (w), 667 (w), 653 (w), 638 (m), 628 (w), 598 (w), 579 (w), 515 (s), 485 (w), 453 (w). 

 MS: (EI, 70 eV) 
310 ([M+2]+, 50), 309 ([M+1]+, 21), 308 ([M]+, 51), 307 ([M-1]+, 14), 295 (22), 293 (22), 225 (22), 224 (48), 223 
(24), 222 (47), 211 (27), 210 (85), 209 (65), 208 (89), 207 (39), 198 (16), 196 (17), 194 (23), 192 (23), 144 (31), 
143 (100), 139 (10), 131 (10), 130 (59), 129 (92), 128 (47), 103 (14), 102 (23), 101 (11), 85 (21), 77 (55), 76 (12), 
75 (11), 59 (13), 57 (12), 43 (34), 42 (11), 41 (36), 40 (39). 

 MP: 78-79 °C 
 TLC:  Rf 0.42 (hexanes/ethyl acetate, 95:5) [silica gel, aqueous KMnO4] 
 

CONCLUSION 
(E)-2-phenylethenyl boronic acid pinacol ester derivatives can be readily prepared by 9-BBN-catalyzed hydroboration reaction of 
terminal aromatic alkynes with pinacolborane. The use of 20 mol% of 9-BBN was found to provide the best yield of the 
hydroboration product. A variety of electronically diverse substrates provided moderate to good yields of the (E)-2-phenylethenyl 
boronic acid pinacol ester derivatives (E)-3a–e. The bifunctional, 4-bromo derivative is especially interesting because it could be 
used as an organic electrophile or organometallic donor in a cross-coupling reaction. Complete control of the alkene geometry of 
the alkenylboronic ester product was observed in all of the cases studied. We intend to continue to explore the scope of this 
reaction and the synthetic utility of the boronic acid pinacol ester products. 
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PRESS SUMMARY 
Boron containing organic compounds are useful reagents in the synthesis of important carbon-containing medicines, materials, 
and fine chemicals. The alkenylboronic acid pinacol esters formed from hydroboration reaction of alkynes with pinacolborane are 
stable, easy to handle, and useful in many synthetic transformations. However, pinacolborane lacks the reactivity necessary to 
undergo facile hydroboration reaction with terminal aromatic alkynes. It was discovered that 9-borobicyclo[3.3.1]nonane (9-BBN) 
can be used to catalyze the hydroboration reaction of terminal aromatic alkynes with pinacolborane. The parameters of the 
experimental procedure were evaluated and an optimal set of reaction conditions were found. This work provides synthetic 
chemists with a method to prepare these important compounds. 
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ABSTRACT 
Synthetic biology integrates molecular biology tools and an engineering mindset to address challenges in medicine, agriculture, 
bioremediation, and biomanufacturing. A persistent problem in synthetic biology has been designing genetic circuits that produce 
predictable levels of protein. In 2013, Mutalik and colleagues developed bicistronic designs (BCDs) that make protein production 
more predicable in bacterial cells (in vivo). With the growing interest in producing proteins outside of cells (in vitro), we wanted to 
know if BCDs would work as predictably in cell-free protein synthesis (CFPS) as they do in E. coli cells. We tested 20 BCDs in 
CFPS and found they performed very similarly in vitro and in vivo. As a step toward developing methods for protein production in 
artificial cells, we also tested 3 BCDs inside nanoliter-scaled microfluidic droplets. The BCDs worked well in the microfluidic 
droplets, but their relative protein production levels were not as predictable as expected. These results suggest that the conditions 
under which gene expression happens in droplets result in a different relationship between genetic control elements such as BCDs 
and protein production than exists in batch CFPS or in cells.  
 
KEYWORDS 
Bicistronic Design; Synthetic Biology; Cell-Free Protein Synthesis; Microfluidics 

 
INTRODUCTION 
Synthetic biology is a new field that integrates molecular biology, engineering, chemistry, mathematics and computer science.1 
Synthetic biologists have invented many useful devices that produce medicines2,3,4, improve agriculture,5 achieve bioremediation6 
and make biofuels or chemical commodities through biomanufacturing.7 Despite these successes, a persistent challenge in 
synthetic biology has been consistent and reliable protein production. To address this challenge, a team of synthetic biologists 
invented bicistronic designs (BCDs) that produce predictable levels of protein in E. coli.8 BCDs are encoded in DNA but function 
as part of mRNA. A BCD consists of two segments of DNA called cistrons that encode polypeptides. The first cistron begins 
with a ribosomal binding site (RBS) followed by a start codon that marks the beginning of a coding segment for a non-functional 
leader polypeptide of 16 amino acids. The stop codon for the coding segment overlaps by one base pair with the start codon for 
the second cistron (see Figure 4A). Upstream of this start codon, and within the 48 bases encoding the leader polypeptide, is an 
RBS element that directs the production of a protein from the second cistron. This second RBS was the focus of the research by 
Mutalik and colleagues. They varied the strength of the second RBS and the amount of protein translated varied accordingly. The 
authors speculated that during translation of the first polypeptide, the large ribosome and its helicase activity eliminated folded 
mRNA structures formed by base pairing between the second RBS and the beginning of the coding sequence in the second 
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cistron. Thus, the second RBS was allowed to base pair with the 16S rRNA of the ribosome without interference from mRNA 
folding and a predictable amount of two different reporter proteins was produced with each of the RBSs tested.8  
 
Although cells are very good at producing proteins, cells often cannot produce robust amounts of orthogonal proteins and 
sometimes cannot produce them at all.9 For example, E. coli will not produce antimicrobial proteins that kill bacteria.10 Therefore, 
synthetic biologists sometimes switch from in vivo production of proteins to in vitro production.11,12,13  The purpose of our research 
was to determine if the BCDs described by Mutalik and colleagues would work as predictably in vitro as they do in vivo. To conduct 
this work, we chose to develop an affordable cell-free protein synthesis (CFPS) protocol instead of purchasing expensive pre-
made mixtures. Once we had a functional CFPS protocol, we tested 20 of the BCDs made by Mutalik and colleagues during 
CFPS.  As a step toward developing methods for protein production in artificial cells, we also compared protein production 
directed by 3 BCDs in CFPS droplets to batch CFPS reactions with the same 3 BCDs.  
 
METHODS AND PROCEDURES 
The protocols for CFPS and microfluidics are too extensive to give all the details in this paper, so we have compiled all methods 
into the appendix. However, we summarize the main steps below. Much of our method has been adapted from multiple 
protocols.14,15,16,17  
 
Cell-free Protein Synthesis for Batch Reactions and Protein Quantification 
E. coli encoding the T7 RNA polymerase (BL21 (DE3) E. coli cells; NEB # C2527H) were grown in LB broth supplemented with 
IPTG to induce T7 RNA polymerase expression. Cells were grown overnight and harvested by centrifugation. Cells were lysed 
using an AVESTIN EmiulsiFlex B-15 high-pressure homogenizer, also known as a French press. Cytoplasmic lysate was 
aliquoted and stored at -80 °C for later use. The CFPS reaction conditions were as follows: 55 mM PIPES-KOH (pH 7.0); 14 mM 
magnesium acetate; 50 mM potassium acetate; 155 mM ammonium acetate; 1.5% PEG-6000; 40 mM 3-phosphoglycerate; amino 
acid cocktail with all 20 naturally occurring protein amino acids at 2.5 mM each; 1.2 mM ATP; 1.0 mM GTP; 0.8 mM UTP; DNA 
template at 10 ng/µL; and 2.5 µL E. coli cell lysate for a final reaction volume of 25 µL. We have an Excel template file we use to 
make the reaction mixtures and this tool is part of the appendix. 
 
Once the ingredients are mixed, we placed the 25 µL aliquots into a 384-well plate and incubated it at the desired temperature for 
variable lengths of time, as indicated. Plates containing CFPS were scanned at the appropriate wavelength for GFP (excitation 485 
nm, emission 515 nm) to quantify the relative fluorescence. The fluorometer was programmed to measure the wells at regular 
intervals and incubate the plate at the desired temperature between measurements.  
 
Cell-free Protein Synthesis in Microfluidic Droplets 
We used the OB1 MK3 Microfluidic Flow Control System from Elveflow to generate droplets for CFPS. CFPS reactions for use 
in microfluidic droplets were prepared as described above for in vitro batch reactions. For each reaction, the aqueous (dispersive 
phase) reservoir for microfluidic droplet generation was filled with 30 µL of this CFPS mixture, 10 µL of nuclease-free water, and 
10 µL containing 500 ng of plasmid DNA for BCD9, BCD19, or BCD24 gene expression constructs (or 10 µL of water for the 
no DNA negative control). The aqueous reservoir was vortexed for about 5 seconds. For each reaction, the oil (continuous phase) 
reservoir was filled with 50 µL droplet stabilization oil (Droplet Genomics cat. DG-DSO-20). Both the dispersive and continuous 
channels were set on the OB1 MK3 to 600 mbar and droplets were collected in a 1.5 ml tube. For each reaction, a volume of 50 
µL of droplets was loaded into a 384 well microtiter plate for use in the fluorometer. Positive control batch reactions with 100% 
CFPS mixture and 75% CFPS mixture were also loaded into the plate. The fluorometer was set to 37 °C and GFP expression was 
measured after 3 hours using excitation and emission wavelengths of 485 nm and 528 nm respectively.  
  
 
RESULTS 
Producing the E. coli cell lysate went smoothly but optimizing CFPS took considerable effort (Figure 1). The first challenge was 
making the amino acid cocktail without precipitating any of the components. The original protocol called for neutralizing the 
acidic pH of the mixtures, but the only way we could get CFPS to work was when we did not adjust the pH of the amino acid 
solution (Figure 1A).18 We tested a range of temperatures and found that 30 °C was optimal, but we used 37 °C for potential 
applications using different proteins. The literature reported the use of a range of PEG-6000 concentrations,16 but we chose 1.5% 
as a compromise between maximum protein production (Figure 1C) and fastest induction time (Figure 1D), defined as the time 
at which GFP production was twice the background level.  
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Figure 1. Characterization of CFPS. A. Varying preparations of the 20-amino acid solution for use in the CFPS reaction mixture by adjusting the pH to 7.4, 
omitting the pH adjustment step, or raising the pH by increasing KOH concentration to 1 M resulted in variable CFPS performance. B. Characterization of CFPS 
performance across a range of incubation temperatures. C. CFPS reactions with varying concentrations of PEG-6000 (% v/v) affected CFPS output. D. CFPS 
induction time also varied with PEG-6000 concentrations. CFPS performance verification experiments used the March lysate while PEG-6000 optimization 
experiments used the July lysate.  Error bars represent ± 1 S.E (n=9). 
 
 

 
 
 
 
 
 
 
 
 
  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Comparison of cell lysate preparations. A, B. July and September lysates were used in CFPS reactions with six buffers that varied from pH 6.5 to 8.0: 
PIPES-KOH (pH = 6.5); PIPES-KOH (pH = 7.0); HEPES-KOH (pH = 7.0); PIPES-KOH (pH = 7.5); HEPES-KOH (pH = 7.5); and HEPES-KOH (pH = 
8.0). C. CFPS induction time compared across the six buffers and two lysate treatments. Error bars represent ± 1 S.E (n=9). 
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An unexpected complication was optimizing the pH of the CFPS reaction mixture. We found that each lysate preparation had its 
own optimal buffer and optimal pH (Figure 2). For example, the lysate produced in July worked best in HEPES-KOH pH 7.0 
whereas the September lysate worked best in PIPES-KOH pH 7.0. We do not have an explanation for these observations. 
Induction times for GFP production also varied depending on the buffer and pH employed. For most experiments, we chose 
PIPES-KOH pH 7.0 as our standard reaction condition since this buffer was incorporated in functional CFPS across multiple 
lysate preparations. 
 
We were curious about why all the time-course fluorescence readings in Figures 1 and 2 began with a decline in fluorescence. We 
hypothesized that CFPS did not commence immediately and that some chemical reaction that altered the pH had to take place 
first. We suspected the pH might need to be closer to 7.4, so we withheld the DNA for variable amounts of time from reactions 
incubated at 37 º C and measured the pH during the entire experiment (Figure 3). If the CFPS reaction is allowed to pre-incubate 
for 15 minutes, then the final protein output is substantially greater. It was striking to us that whether the reaction contained 
DNA or not, the pH gradually fell from about 7.9 to near 7.0. The decrease in fluorescence between pH measurements was 
shown to be temperature-dependent because it diminished as we reduced the incubation temperature within the fluorometer. As 
described in the literature, when we added maltose to a final concentration of 12 mM after 2 hours of reaction, we doubled the 
final protein output.18  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Analysis of CFPS GFP production and pH changes. CFPS reaction mixture pre-DNA incubation times are indicated in the legend. Dotted sections of 
the graph represent the duration of measurement periods to account for the time the CFPS reactions spent out of the plate reader during pH sampling. CFPS 
employed the July lysate. Error bars represent ± 1 S.E (n=9). 
 
Once we had optimized CFPS, we tested 20 of the BCDs from Mutalik and colleagues (Figure 4).8 We ranked the GFP output 
from highest (BCD19) to lowest (BCD22). When we compared our GFP fluorescence levels from Figure 4 to those from the 
Mutalik paper with Spearman’s Rank Order Correlation, we found a high degree of correlation (r = 0.88). From the data in Figure 
4B and the high degree of concordance with Mutalik’s data, we conclude that the BCDs first developed for in vivo use work 
similarly in vitro. This is the first publication showing BCDs function in vitro.  
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Figure 4. CFPS using bicistronic designs A. Diagram of BCD components as part of a gene expression cassette that also includes a T7 promoter and a GFP 
reporter gene (not drawn to scale).  B. Fluorescence output after three hours of CFPS reactions with 20 different BCDs, a strong RBS positive control, and a no 
DNA negative control. Error bars represent ± 1 S.E (n=9). The 3 boxed BCDs were used for droplet CFPS in Figure 5.  
 
After establishing the functionality of BCDs in CFPS batch reactions, we explored their potential for use in nanoliter-scale 
microfluidic droplets (Figure 5A). To realize our goal of using microfluidic droplets for metabolic engineering will require further 
exploration of the function of gene regulatory elements such as BCDs in nanoscale droplets. Through experimentation, we 
discovered the normal CFPS reaction mixture was too viscous to produce reliable droplets, so we diluted the droplet reaction 
mixture with water to 75% of the concentration of CFPS batch reactions (Figure 5B). We tested three of the BCDs (19, 9 and 
24) from Figure 4 that represent a range of strengths. We also compared 75% reaction mixtures in batch reactions and droplet 
CFPS. The 100% CFPS batch reactions performed as we expected, though the 75% pooled CFPS varied a bit more than we had 
predicted. However, we were surprised to see that 75% concentration CFPS within the droplets outperformed the same 
concentration in pooled CFPS. We observed that the measured collection of droplets was about 75% oil by volume and 25% 
aqueous CFPS by volume. Therefore, the overall observed output of GFP from CFPS in droplets is actually 4-fold higher than is 
represented in the batch results of Figure 4. We offer two possible explanations for this result. One is that the reflective nature of 
the oil and the geometry of the droplets enhances GFP detection, and the other is that CFPS happened more efficiently in droplet 
CFPS than in CFPS batch reactions. We also found that in droplet CFPS, the relative fluorescence outputs from BCD19 and 9 are 
reversed compared to the results in vivo or in CFPS batch reactions in vitro. These results suggest that the reaction conditions under 
which gene expression happens in droplets result in a different relationship between BCDs and protein production than exists in 
batch CFPS or in cells. Due to the complexity of microfluidic droplet formation, there also could be other reasons for these 
unexpected results.  
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Figure 5. CFPS using 3 BCDs in microfluidic droplets. A. The left micrograph shows a perpendicular junction PDMS droplet-generation microchip with labels 
that indicate the flow of the aqueous CFPS dispersive phase, the oil continuous phase, and droplets immersed in oil.  The right micrograph was taken on a 
fluorescence microscope and shows various levels of GFP produced by CFPS. B. Fluorescence output after three hours with BCD19, BCD9, and BCD24 using 
100% CFPS solutions in pooled reactions, 75% CFPS solutions in pooled reactions, 75% CFPS solutions in populations of microfluidic droplets, and no DNA 
(DNA-) negative controls. Error bars represent ± 1 S.E (n=9). 
 
CONCLUSIONS 
In this paper, we describe a less expensive approach to CFPS using cell lysate produced locally, as spelled out in the detailed 
protocols of the appendix (Figures 1 – 3). The goal of this research was to determine if BCDs performed similarly in vitro and in 
vivo. As shown by the results presented in Figure 4 and Figure 5, our Spearman’s Rank Order Correlation calculations show the 
BCDs function equivalently in pooled CFPS and droplet CFPS. Furthermore, we found that GFP detection is amplified in 
droplets, either because the reflection of light enhanced the GFP signal detected in a droplet or oil mixture or CFPS in droplets 
was more efficient. Although the BCDs worked well in the microfluidic droplets, their relative expression levels were not as 
consistent as expected. These complex results are not surprising given that Figure 5 is the first published example of BCD gene 
expression in microfluidic droplets. Additional research will be required to determine if CFPS with BCDs is more efficient or if 
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GFP light reflection produces enhanced light detection in the absence of more protein production. Furthermore, more research 
will be required to determine the source of droplet variability for GFP production.  
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PRESS SUMMARY 
This synthetic biology study examines the reliability of protein production performed in vitro. Specifically, we compared the 
function of 20 bicistronic designs (BCDs) developed for use inside E. coli cells to their function in cell-free protein synthesis. We 
found that BCDs functioned similarly in vitro and in vivo. When tested within nanoliter scaled droplets produced by microfluidics, 
the BCDs also performed well, though GFP detection varied. In summary, BCDs can be used interchangeably for in vivo and in 
vitro protein production. 
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ABSTRACT 
Wolbachia (Rickettsiales: Anaplasmataceae) are maternally transmitted intracellular bacteria that infect approximately half of all insect 
species. These bacteria commonly act as reproductive parasites or mutualists to enhance their transmission from mother to 
offspring, resulting in high prevalence among some species. Despite decades of research on Wolbachia’s global frequency, there are 
many arthropod families and geographic regions that have not been tested for Wolbachia. Here, arthropods were collected on the 
Vanderbilt University campus in Nashville, Tennessee, where Wolbachia frequency has not been previously studied. The dataset 
consists of 220 samples spanning 34 unique arthropod families collected on the Vanderbilt University campus. The majority of our 
samples were from the families Blattidae (Blattodea), Pulicidae (Siphonaptera), Dryinidae (Hymenoptera), Aphididae (Hemiptera), 
Paronellidae (Entomobryomorpha), Formicidae (Hymenoptera), Pseudococcidae (Hemiptera), Sphaeroceridae (Diptera), and 
Coccinellidae (Coleoptera). PCR-based techniques were used to assign infection states and, from these data, the first cases of 
Wolbachia in the Paronellidae springtails, Lithobiidae (Lithobiomorpha) centipedes, Lonchopteridae (Diptera) spear-winged flies, 
Sepsidae (Diptera) black scavenger flies, Cryptocercidae (Blattodea) wood roaches, and Lauxaniidae (Diptera) acalyptrate flies were 
identified. Within-family infection frequencies ranged from 17-100% when Wolbachia was observed; however, numerous families 
tested did not reveal evidence of infection. These results expand on the field's understanding of Wolbachia’s frequency in Nashville, 
Tennessee, and among arthropod families broadly, and is the first report of Wolbachia in centipedes. 
 
KEYWORDS 
Wolbachia; Infection Frequency; Endosymbiont; Tennessee; Centipede; Arthropod; Polymerase Chain Reaction; Nashville 

 
INTRODUCTION 
Wolbachia is a genus of obligate intracellular bacteria that commonly infect arthropods and nematodes.1–4 They often reside in 
reproductive tissue cells, are vertically inherited from ova to offspring5 and are occasionally transferred horizontally between 
arthropods.6–9 Wolbachia frequently interact with their hosts as mutualists10 and/or reproductive parasites11 to encourage their 
proliferation through host populations.12–17 Wolbachia can increase or decrease host longevity,18–22 suppress pathogen replication,23–

27 provide essential nutrients to their host,28, 29 and cause reproductive parasitism phenotypes such as cytoplasmic incompatibility, 
male-killing, feminization, and parthenogenesis.11, 30–34 
 
Studies agree that Wolbachia are common among arthropod species.1–4 However, estimates for the percentage of infected species 
range from 16.9%1 to as high as 66%,2 with other estimates reporting 40%3 and 52%.4 The variance in these estimates can be 
attributed to differences in testing methodologies and data sets used in these analyses. Each analysis leverages PCR-based screens 
for bacterial symbionts, but each differ in how they handle species that have small or large sample sizes since high sample sizes are 
more likely to reveal infections. Intra-species infection frequencies can be below 10% to as high as 100%,3, 35 and these frequencies 
can vary based on geography.36–39 
 
Despite decades of research aimed at elucidating Wolbachia’s frequency among arthropods, estimates remain variable partly due to 
the lack of sampling of some arthropod families and in various geographic regions. Here, we aim to characterize Wolbachia infection 
frequency in arthropod families collected in Nashville, Tennessee, which, to our knowledge, has not been studied in the context of 
Wolbachia frequency. We collect arthropods, extract DNA, and use PCR-based techniques to describe infection states. We report 
that 73% of the families we collected are infected, identify Wolbachia in six families previously not reported with an infection, and 
describe infection frequencies ranging from 17-100% within infected families. These results expand our knowledge of the infection 
frequency of Wolbachia in a variety of arthropods in Nashville, Tennessee. 
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METHODS AND PROCEDURES 
Arthropod collection and identification. 
As part of an Introduction to Biology Laboratory course at Vanderbilt University, arthropods were collected from January to March 
2018 on the Vanderbilt University campus in Nashville, Tennessee (Fig. 1A). Samples were collected inside buildings, outside 
buildings on the campus grounds, and in the Vanderbilt University greenhouse (Fig. 1B). Each sample represents a single 
arthropod. A variety of collection methods were used, including Berlese funnels, food and chemical attractants, pitfall traps, color 
traps, sticky traps, and active collection. Arthropods were removed from traps within 24 h and were individually frozen at -20oC in 
sterile 1.5 mL Eppendorf tubes (Eppendorf, Hamburg, Germany), 15 mL conical tubes, or 50 mL conical tubes. The family of each 
arthropod was determined using dichotomous keys and pictorial guides.40–42 Sub-family level identification was not conducted due 
to time restrictions of the class, and all specimens were destroyed during downstream processing. 
 
Determining Arthropod Infection Status. 
DNA was extracted from all arthropod samples using the Gentra Puregene Tissue Kit (QIAGEN, Hilden, Germany) slightly 
modified from the manufacturer’s protocol. For larger samples, the posterior end of the arthropod was dissected for DNA 
extraction since Wolbachia are transmitted maternally and are likely to be present in these tissues. To determine infection state, PCR 
was conducted using WSpec-forward (5’-CAT ACC TAT TCG AAG GGA TAG-3’) and WSpec-reverse (5’-AGC TTC GAG TGA 
AAC CAA TTC-3’) primers targeting the Wolbachia 16S rRNA gene,1, 43 using the following cycling conductions: 94℃ for 2 m, 30 
cycles at 94℃ for 30 s, 49℃ for 45 s and 72℃ for 1 min, and a final extension at 72℃ for 10 m. Positive controls and negative 
controls were Wolbachia-infected and uninfected Drosophila melanogaster respectively from laboratory stocks generously donated by 
the Bordenstein lab at Vanderbilt University. PCR products were run on a 1% agarose gel and visualized under UV light after 
treatment with GelRed (Biotium, Fremont, CA). A sample was considered infected if it produced a 436 bp-long fragment as 
expected for the WSpec amplicon. 
 
Analyses, and figure creation. 
All analyses were conducted and graphs generated in GraphPad Prism 8 (GraphPad Software, San Diego, CA), maps were generated 
in ArcGIS Online (Esri, Redlands, CA), and figure aesthetics were edited in Affinity Designer 1.7 (Serif, Nottingham, United 
Kingdom). 
 
RESULTS 
Arthropods (n=220) were collected on the Vanderbilt University campus in Nashville, Tennessee (Fig. 1A). Samples were collected 
in three clearly different environments, either inside buildings, not including the Vanderbilt University greenhouse (n=21), outside 
buildings (n=84), or in the Vanderbilt University greenhouse (n=115), and most families collected were only found in one location 
type. The Psychodidae (Diptera) and Sphecidae (Hymenoptera) were only collected inside campus buildings; the Aphididae, 
Armadillidiidae (Isopoda), Cryptocercidae, Paronellidae, Pholcidae (Araneae), Pseudococcidae, and Thripidae (Thysanoptera) were 
only found in the greenhouse. The Acrididae (Orthoptera), Anthomyzidae (Diptera), Ceratopogonidae (Diptera), Dryinidae, 
Latridiidae (Coleoptera), Lauxaniidae, Lithobiidae, Lonchopteridae, Pulicidae (Siphonaptera), Salticidae (Araneae), Sarcophagidae 
(Diptera), Sciaridae (Diptera), Sepsidae, Sphaeroceridae (Diptera), Tetranychidae (Trombidiformes), Tipulidae (Diptera), and 
Vespidae (Hymenoptera) were only found on campus grounds (Fig. 1B). Additionally, Blattidae specimens were found in the 
greenhouse and non-greenhouse buildings, and Coccinellidae, Drosophilidae (Diptera), Formicidae, Muscidae (Diptera), 
Pentatomidae (Hemiptera), and Theridiidae (Araneae) specimens were found in both indoor and outdoor locations (Fig. 1B). The 
Phoridae (Diptera) were the only family found both in the greenhouse and on campus grounds (Fig. 1B). 
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Figure 1. Samples representing 34 arthropod families were collected outdoors, indoors, and in a greenhouse on the Vanderbilt University campus in Nashville, 
TN. (A) Dark grey dots represent sampling locations. “I” indicates that samples were collected from inside buildings (excluding the greenhouse). “O” indicates 
that samples were collected outside and around campus buildings. The sample size is shown beside each sampling location. (B) Venn diagram shows arthropod 
families found in each sampling location. 17 families were only sampled from outdoor locations, two families only from indoor locations, and seven families only 
from the greenhouse. Some families are found both outside and inside, and some are found both inside and in the greenhouse. Only the Phoridae (denoted with 
an *) was found in both the greenhouse and outdoors. The number of samples collected for each family are shown to the right of the family name.  

To characterize Wolbachia infection states, DNA was extracted from samples and PCR was used to amplify for a segment of the 
Wolbachia 16S rRNA gene using the WSpec primer set.36, 43 We identified Wolbachia 16S rRNA fragments in 49% of specimens and 
in 73% of families. Wolbachia was not detected in the families Latridiidae (n=1), Pentatomidae (n=1), Salticidae (n=1), Tipulidae 
(n=1), Vespidae (n=1), Anthomyzidae (n=2), Sphecidae (n=2), Theridiidae (n=2), and Thripidae (n=4) (Fig. 2). However, aside 
from the Thripidae, all of the uninfected families in our study had two or fewer samples each, making it impossible to conclude 
whether these infection states can be generalized to the family as a whole. Additionally, Wolbachia was found in the families Acrididae 
(n=1, 100% infected), Armadillidiidae (n=1, 100%), Cryptocercidae (n=1, 100%), Lithobiidae (n=1, 100%), Lonchopteridae (n=1, 
100%), Pholcidae (n=1, 100%), Sarcophagidae (n=1, 100%), Sciaridae (n=1, 100%), Tetranychidae (n=1, 100%), Muscidae (n=2, 
50%), Psychodidae (n=2, 50%), Sepsidae (n=2, 50%), Ceratopogonidae (n=3, 33%), Drosophilidae (n=3, 67%), Lauxaniidae (n=3, 
100%), Phoridae (n=4, 75%), Coccinellidae (n=6, 17%), Sphaeroceridae (n=8, 50%), Pseudococcidae (n=9, 100%), Formicidae 
(n=13, 31%), Paronellidae (n=18, 67%), Aphididae (n=20, 20%), Dryinidae (n=20, 70%), Pulicidae (n=22, 32%), Blattidae (n=61, 
52%) (Fig. 2). Among infected families, the infection frequency was as low as 17% in the Coccinellidae to as high as 100% in the 
families Acrididae, Armadillidiidae, Cryptocercidae, Lithobiidae, Lonchopteridae, Pholcidae, Sarcophagidae, Sciaridae, 
Tetranychidae, Lauxaniidae, and Pseudococcidae (Fig. 2). Notably, we do not claim that Wolbachia has reached fixation in any of 
these families since all families with 100% infection frequency had low sample sizes. 
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Figure 2. Wolbachia infection frequency varies between arthropod families. Of the 34 families collected, 25 were infected with Wolbachia. All of the samples were 
infected in ten families and all were uninfected in nine. The remaining families had infection frequencies between 17-67%. White bars represent uninfected samples 
and black bars represent infected samples. The percentage to the right of each bar represent the percent of infected samples per family. 
 
DISCUSSION 
We report Wolbachia infection states for 220 arthropod samples spanning 34 families, of which 25 are infected. To our knowledge, 
six of these infected families did not have prior reports of infection in the literature (Table 1): Paronellidae elongate springtails, 
Lithobiidae stone centipedes, Lonchopteridae spear-winged flies, Sepsidae black scavenger flies, Crytptocercidae wood roaches, and 
Lauxaniidae acalyptrate flies. We found the infection frequency for these families to be 78% in the Paronellidae (n=18), 50% in the 
Sepsidae, and 100% in the Lithobiidae (n=1), Lonchopteridae (n=1), Cryptocercidae (n=1), and Lauxaniidae (n=4). Conclusions 
about infection frequencies can only be drawn from the Paronellidae, which had a relatively robust sample size. While not reported 
in the Paronellidae, Wolbachia has been reported in seven other springtail families spanning four orders including the order 
Entomobryomorpha, which contains the Paronellidae.44–46 These results suggest that Wolbachia might be more common among this 
subclass than it would seem from literature. 
 
The infection in Lithobiidae centipedes is of particular interest since, to our knowledge, Wolbachia has not been previously reported 
in centipedes. In fact, two prior surveys have proposed negative infection states for centipedes in the family Lithobiidae36 and in 
the order Scolopendromorpha.47 However, it remains possible that our positive infection state is the result of a false-positive 
infection. For instance, the carnivorous lifestyle of centipedes may increase the rate of false-positives since they may feed on 
Wolbachia-infected insects whose DNA would then contaminate the sample. Future studies that collect more samples and dissect 
specific tissue for Wolbachia-infection assays will help confirm the frequency of infection among this arthropod order. Additionally, 
while Wolbachia are common among Diptera and Blattodea,12, 36, 48–50 we report the first cases of infection in the Lonchopteridae, 
Sepsidae, Lauzaniidae, and Cryptocercidae, which have been mostly overlooked. These results validate the premise that additional 
sampling and Wolbachia infection testing is necessary to identify Wolbachia in arthropod groups that are under sampled. 
 
Finally, while there are reports of infection in the Pentatomidae,51 Salticidae,52 Theridiidae,53, 54 Thripidae,55–57 Tipulidae,58 and 
Vespidae59 in the literature (Table 1), we did not find evidence of infection in these families in Nashville. However, we are cautious 
to make firm conclusions on these data due to low sample sizes and numerous alternative explanations for negative results. For 
example, PCR-based techniques can miss low-density Wolbachia infections if they are below a detection threshold,60 failures in DNA 
extraction and/or PCR can result in false-negatives due to insufficient or low quality DNA, and since the WSpec primers used here 
were designed for Supergroup A and B Wolbachia it is plausible that our techniques would not detect highly divergent Wolbachia 
strains.36, 43 Further work is necessary to confirm that Wolbachia do not reside in these families in Nashville, but if these results hold 
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to larger sampling it may suggest differences in Wolbachia’s frequency in Nashville relative to other regions that have been sampled. 
However, since we only identified samples to family, it is possible that our samples belong to different species than have been 
reported in other studies. 

 
Family Infected? Literature reports of infection?  Reference 
Acrididae Yes Yes 61 
Aphididae Yes Yes 62–64  
Armadillidiidae Yes Yes 65 
Blattidae Yes Yes 48, 49 
Ceratopogonidae Yes Yes 66, 67 
Coccinellidae Yes Yes 68 
Drosophilidae Yes Yes 12, 69, 70 
Dryinidae Yes Yes 71 
Formicidae Yes Yes 72–74 
Muscidae Yes Yes 75 
Pholcidae Yes Yes 54 
Phoridae Yes Yes 76 
Pseudococcidae Yes Yes 77 
Psychodidae Yes Yes 78–80 
Pulicidae Yes Yes 81 
Sarcophagidae Yes Yes 82 
Sciaridae Yes Yes 83 
Sphaeroceridae Yes Yes 59 
Tetranychidae Yes Yes 84 
Lithobiidae Yes No 36 
Sepsidae Yes No 85 
Cryptocercidae Yes --- N/A 
Lauxaniidae Yes --- N/A 
Lonchopteridae Yes --- N/A 
Paronellidae Yes --- N/A 
Pentatomidae No Yes 51 
Salticidae No Yes 52 
Theridiidae No Yes 53, 54 
Thripidae No Yes 55–57 
Tipulidae No Yes 58 
Vespidae No Yes 59 
Sphecidae No No 36 
Anthomyzidae No --- N/A 
Latridiidae No --- N/A 

Table 1. Family level Wolbachia infection status compared to the literature. Bold family names represent families for which the infection status in the literature 
disagrees with those reported in this study. Bold and underlined families had not been previously screened for Wolbachia infection. 

 
In summary, we describe Wolbachia’s frequency among arthropods in Nashville, Tennessee and report the first instance of Wolbachia 
in several arthropod families, including in the Lithobiidae centipedes. Additionally, we provide data for infection frequency within 
numerous other families, often overlooked by the current literature. This research will inform studies aimed at understanding 
Wolbachia’s global spread and distribution, by adding Nashville, Tennessee, to the Wolbachia pandemic map. 
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PRESS SUMMARY 
Wolbachia are intracellular and maternally inherited bacteria that infect roughly half of all arthropod species. Since 
arthropods account for approximately 85% of all animals, Wolbachia is thought to be the world’s most common 
animal-associated bacterial infection. However, estimates of Wolbachia infection frequency range from as low as 17% 
to as high as 66% of species. Additionally, strong arthropod family-biases and geographical-biases exist in the current 
literature. It is thus important to survey new species and different geographic regions to better understand Wolbachia’s 
global frequency. Here, we report a dataset of 220 arthropod samples, spanning 34 families, that have been tested for 
Wolbachia using PCR-based techniques. These samples were collected by undergraduate students as part of an 
Introduction to Biology Laboratory at Vanderbilt University in Nashville, Tennessee. We confirm literature reports of 
infections in 25 arthropod families and novel infections in six, and put Nashville on the map of locations tested for 
Wolbachia frequency. 
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