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ABSTRACT 
Studies of curves in 3D-space have been developed by many geometers and it is known that any regular curve in 3D 
space is completely determined by its curvature and torsion, up to position. Many results have been found to 
characterize various types of space curves in terms of conditions on the ratio of torsion to curvature. Under an extra 
condition on the constant curvature, Y. L. Seo and Y. M. Oh found the series solution when the ratio of torsion to 
curvature is a linear function. Furthermore, this solution is known to be a rectifying curve by B. Y. Chen’s work. This 
project, uses a different approach to characterize these rectifying curves.  
This paper investigates two problems. The first problem relates to figuring out what we can say about a unit speed curve 
with nonzero curvature if every rectifying plane of the curve passes through a fixed point  in . Secondly, some 
formulas of curvature and torsion for sphere curves are identified. 
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INTRODUCTION 
Consider a unit speed curve , where  is an interval on the real number line. Since it is a unit speed 
curve (i.e.  has magnitude 1), the unit tangent vector is   
Definition 1. The curvature, , of a unit speed curve, , is defined as  

.             Equation 1. 

The principal normal vector, , is defined by dividing  by its magnitude:  

.         Equation 2. 

We then have . The binormal vector which is perpendicular to both  and  is defined as 
. 

 
Figure 1. The Frenet-Serre frame. 

These three vectors  form an orthonormal basis in  along the curve which is called the Frenet-
Serre frame (Figure 1).  So,  

                              Equation 3.  
for functions , , and . It is easy to see that c is zero from the fact that B is a unit vector field. The fact that  is zero 
follows from the perpendicularity of  and  together with the fact that , which follows from 

. We are ready to define the torsion of the curve. 
Definition 2. The torsion, , of the curve, , is defined by the equation . 
The curvature measures the deviation of a curve from being a line and torsion measures the deviation of a curve from 
being contained in a single plane. 
Since we know that , , and  are all mutually perpendicular to each other, we have . 
Using the facts that  and  we derive the following: 
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  .              Equation 4. 
Thus, we have the following Frenet-Serret formula: 
             

 
            Equation 5. 

According to the Fundamental Theorem of Curves, any regular curve in 3D space is completely determined by its 
curvature and torsion, up to position. Several characterization facts have been found over the years. We know that any 
curve with constant curvature and zero torsion is a circle and the curve with a constant ratio of torsion to curvature is 
known to be a general helix.  
Now, we need to introduce three types of planes along the curve. The osculating plane to a unit speed curve  is the 
plane perpendicular to , the normal plane of  is the plane perpendicular to  and the rectifying plane of 

 is the plane perpendicular to  (Figure 2).  

 
Figure 2. The normal, osculating and rectifying planes. 

It has been shown that if every normal plane to the curve  passes through a fixed point  in , then the curve lies 
on a sphere, and if every osculating plane to the curve  passes through a fixed point  in , then the curve lies on 
a plane.1 Thus, it is natural to investigate the case where every rectifying plane goes through a given point .  
Definition 3. A rectifying curve is a space curve whose position vector lies in its rectifying plane.3   
The idea of rectifying curves was introduced by B. Y. Chen and he provided many fundamental properties of the curves 
together with classification results.3 
For the second problem investigated in this paper, we will need the following fact about the curvature and torsion of 
“sphere curves”, i.e. curves in  lying on a sphere. 
Proposition: If  is a unit speed curve with , , then  lies on a sphere if and only if  

.
1               Equation 6. 

 
RESULTS 
The first problem we worked on was finding a necessary condition for a unit speed curve if every rectifying plane 
contains the point  in .  Since the rectifying plane is orthogonal to , we have . Thus, taking 
the derivative of both sides we find 

.      Equation 7. 
Then by substituting from the Frenet-Serret formula we have 

 
                                                                                                     Equation 8.

 
since . We know 

.           Equation 9. 
Thus, 
                                                                                        Equation 10. 
Then, taking another derivative of Equation 8, we obtain  

 
  

  
 

                Equation 11. 
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So by Equation 10, we have 
 
and by 

simplification we obtain 

 
     Equation 12. 

Therefore, 

                                                       

 

                   Equation 13. 

                                               Equation 14. 

Then working with the denominator of Equation 13,  

 

        Equation 15. 

Equation 13 becomes 

 

                

        Equation 16. 

In a similar manner, since we know that ,  

                Equation 17. 

Therefore 

                                                              Equation 18.  

We then let . Equation 18 becomes 
 .      Equation 19. 

We take another derivative of Equation 18, to find 

         Equation 20.

 and since , 

        Equation 21. 

We then obtain  

                    
Equation 22. 

and we now note that ,  and  are linearly independent. Thus,  

                                                                                                                      Equation 23.  

                                                                                .                                                                   Equation 24.  

Then, working with Equation 24, we have ,  and  for some constants ,  and arc 
length . This solution satisfies Equation 23 as well.  
Here is the summary of the first result: 
Theorem A: Suppose  is a unit speed curve with nonzero curvature.  
If every rectifying plane contains the point  in , i.e., if  is a rectifying curve, then its ratio  is a linear function.  
Note: This result was obtained by B. Y. Chen in Theorem 2,3 but it was derived here by a different method.  
Our next task is to get the formula for the curvature and torsion for a sphere curve. From the Proposition,  

 is a sphere curve in  if and only if . Let . Then . Thus,  

.                  Equation 25.
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Substituting , 

             Equation 26.

 which yields 

 

           Equation 27. 
By rearranging the terms 

.           Equation 28.

 Taking the integral of both sides to solve the separable differential equation we obtain 
 
for a constant 

and then  for a constant . 
By solving for , we find 

,       Equation 29.

 and since we know that , we use this formula for  to get  

,       Equation 30.

 for a differentiable function  and a constant .  
The above result can be summarized as follows: 
Theorem B: For a sphere curve in , its curvature  and  are given by  

 and                    Equation 31.

 for a constant  and a differentiable function  
 
DISCUSSION  
Centrodes are a particular kind of rectifying curve and they are useful in mechanics and joint kinematics.4 Another 
example of application appeared in the Journal of Hand Surgery.5  
Using the formulas for curvature and torsion of sphere curves we have found, future work would include finding a 
formula for the original sphere curve satisfying given curvature and torsion with specific  and differentiable function 

. This is a continuation of work by Ye Lim Seo and Yun Myung Oh published in American Journal of 

Undergraduate Research in Jan, 2015.6   
 
REFERENCES  
1. Millman, R. and Parker, G. (1977) Elements of differential geometry, Prentice Hall, Englewood Cliffs, N. J. , 33–37 
2. Curvature, Torsion and the Frenet Frame. blogimages.bloggen.be/gnomon/attach/203774.pdf. 
3. Chen, B. Y. (2003) When Does the Position Vector of a Space Curve Always Lie in Its Rectifying Plane?, Amer. Math. 

Monthly 110, 147–152. 
4. Chen, B. Y. and Dillen, F. (2005) Rectifying Curves as Centrodes and Extremal Curves, Bulletin of the Institute of 

Mathematics Academia Sinica 33 No. 2, 77–90.  
5. Weiler, P.J. and Bogoch, R. E. (1995) Kinematics of the distal radioulnar joint in rheumatoid-arthritis-an in-vivo study 

using centrode analysis, J. Hand Surgery 20A, 937–943. 
6. Oh, Y. M. and Seo, Y. L. (2015) A Curve Satisfying  with constant , American Journal of Undergraduate 

Research 12, 57–62. 
 
ABOUT THE STUDENT AUTHOR 
Julie Logan is an undergraduate student at Andrews University and this paper is a requirement of the honors program at 
Andrews University. She has interest in mathematics and has earned several awards for excellence in mathematics 
classes. She is planning to apply for graduate work in mathematics. 
 
PRESS SUMMARY 
It is known that for every rectifying curve, the ratio  is a linear function. In this paper, we give a different proof of 
the result. Besides, we also derive formulas for the curvature and the torsion of sphere curves as well. 
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