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ABSTRACT 
Inter-domain communication plays a key role in the function of modular proteins. Earlier studies have demonstrated that the 
coupling of domain motions is important in mediating site-to-site communications in modular proteins. In the present study, 
bioinformatics and molecular simulations were used to trace “pre-existing” residue-residue interaction networks that mediate 
coupled-domain dynamics in multi-domain Escherichia coli methionyl-tRNA synthetase (Ec MetRS). In particular, a comparative 
study was carried out to evaluate the effectiveness of coarse-grained normal mode analysis and all-atom molecular dynamic 
simulation in predicting pre-existing pathways of inter-domain communications in this enzyme. Integration of dynamic 
information of residues with their evolutionary features (conserved and coevolved) demonstrated that multiple residue-residue 
interaction networks exist in Ec MetRS that promote dynamic coupling between the anticodon binding domain and the 
connective polypeptide I domain, which are > 50Å apart, through correlated motions. Mutation of residues on these pathways 
have distinct impact on the dynamics and function of this enzyme. Moreover, the present study revealed that the dynamic 
information obtained from the coarse-grained normal mode analysis is comparable to the atomistic molecular dynamics 
simulations in predicting the interaction networks that are essential for promoting coupled-domain dynamics in Ec MetRS.  
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INTRODUCTION 
Studies on modular enzymes have suggested that coupling of dynamics between domains is critical for coordinating biological 
events occurring at distant sites.1-7 There are two well-known models8-9 for long-range allosteric communications - the “induced-
fit” model (substrate-induced conformational change propagated through a single residue-residue interaction pathway) and the 
“population-shift” model (a perturbation at a distant site that alters the conformational equilibrium through “pre-existing” 
multiple pathways of residue-residue interactions).8,9 Additionally, an updated model suggested that “pre-existing” multiple 
pathways of long-range site-to-site communications are present in the protein even in the absence of allosteric effectors.8 After 50 
years of debate, there is now growing consensus of opinion that conformational selection followed by conformational adjustment 
(“population-shift”) is the mechanism of ligand binding and allostery. 7, 10-13Also, theoretical and experimental studies have shown 
that the site-to-site communication is propagated by networks of coupled residues and regulated by enthalpic (conformational) 
and/or entropic (dynamic) changes.14-17 

 
For single domain polypeptides, Ranganathan and coworkers have shown that one or more contiguous networks of residues that 
are evolutionarily conserved or coevolved facilitate communications between distant functional sites.18-20 However, for multi-
domain proteins, the molecular-level picture of the inter-domain communication becomes quite complex as each domain 
functions more like an independent entity in terms of backbone flexibility and structural stability. As earlier studies have 
demonstrated that coupling of domain dynamics is prerequisite in coordinating biological events occurring at distant sites, inter-
domain communication pathways in modular proteins could be identified by tracing the evolutionarily constrained residues that 
could mediate coupled domain dynamics.  
 
Molecular dynamic (MD) simulations and normal mode analysis (NMA) have emerged as two important tools for studying 
protein dynamics. Although MD simulations provide invaluable insight into the atomic-level details of protein dynamics, they are 
computationally expensive to sample atomic motions that are relevant for biological functions (microsecond to millisecond time-
scale motions). The alternative approach to determine proteins’ slow dynamics is NMA21. NMA could be used to sample wide-
range of protein dynamics, including low-frequency collective motions, as well as high frequency local fluctuations. Interestingly, 
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Skjaerven et al. have shown that long-time-scale (200 ns) all-atom MD simulations, all-atom NMA, and coarse-grained NMA 
produce comparable results in depicting protein dynamics.22 These observations suggest that the computationally inexpensive 
NMA method could be used to probe the site-to-site communication pathways in large modular proteins.  
 
In this study, an attempt has been made to employ atomistic and coarse-grained simulation methods to trace the pre-existing 
pathways of residue interaction networks that could facilitate coupled-domain dynamics in the Escherichia coli methionyl-tRNA 
synthetase (Ec MetRS), a member of AARS family. Ec MetRS catalyzes covalent attachment of methionine to the tRNAMet. The 
accurate synthesis of methionyl-tRNAMet requires coordination of several events occurring in distant domains (Figure 1) of the 
Ec MetRS.23,24 Presence of inter-domain communication in Ec MetRS is evident from various experimental studies. For example, 
the methionylation of tRNAMet at the catalytic site is triggered by tRNA binding at the anticodon domain, which is located ~ 50 Å 
away from the aminoacylation site. A 106-fold decrease in aminoacylation activity (kcat/KM) was observed for tRNAs with 
truncated anticodon sequence, but identical acceptor stem sequence.25-27 Moreover, mutations of tRNA anticodon nucleotides or 
the highly conserved C-terminal residues of MetRS (namely, W461, N452, and R395, which are essential for the anticodon base 
recognition) have significant (~105-fold) impact on the efficiency of tRNA aminoacylation.28-31 Although, separate values of these 
kinetic parameters were not deciphered, the existence of an inter-domain communication, stretching from the anticodon binding 
domain to the CP domain (Figure 1), is believed to be crucial in shaping a functional Ec MetRS molecule.  
 

The long-range communication between the anticodon domain and the catalytic domain in Ec MetRS has been previously studied 
by atomistic MD simulations in the presence of tRNA.32,33 Ghosh et al. have observed that the predicted communication 
pathways do not involve any residues of the tRNA. This poses an important question  if long-range inter-domain 
communications propagate through only protein, then the protein sequence, its structure/folding, and the intrinsic dynamics 
(arising out of the folding) have all necessary information that can promote such communications. In fact, this is evident from our 
combined bioinformatics and molecular simulation studies on Thermus thermophilus leucyl-tRNA synthetase (Tt LeuRS) and Ec 
prolyl-tRNA synthetase (ProRS), where we observed that the thermally coupled and evolutionarily constrained (coevolved and 
conserved) residues facilitate coupled-domain dynamics.34,35 Therefore, in the present work we have employed the recently 
developed bioinformatics-based Statistical Thermal Coupling Analysis (STCA) method35 to explore the molecular mechanism of 
inter-domain communications in Ec MetRS. In addition, we aimed to explore if the dynamical features obtained from the coarse-
grained simulations and all-atom molecular dynamics simulations could produce comparable results. Finally, to validate the STCA 
results, selected residues on the predicted pathways were mutated and the impact of mutations of pathways residues on the 
collective dynamics of a distant domain were also probed using atomistic simulations.  
 
METHODS AND PROCEDURES  
Based on reported experimental data, W461 (C-terminal domain) and M134/F140 (CP domain) were selected as the two termini 
between which the interaction networks were mapped.31 Especially, the M134 region of the CP domain and W461of the C-
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Figure 1. Cartoon representation of the 3-dimensional structure of the monomeric form of Ec MetRS (residues 3-548, PDB entry:  1QQT). The 
structural domains are colored as follows: red, Rossmann-fold (residues 1-96, 252-323); green, connective polypeptide (CP) domain (residues 97-251); cyan, 
KMSKS domain (residues 324-384 and 536-547) and blue, the C-terminal -helix bundle domain (residues 385-535). The three residues, W461, N452, and 
R395, in the C-terminal domain and M134 and F140 of the CP domain are shown in yellow beads. 
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terminal are known to be important for aminoacylation.24 Visualizations and mutations were performed using VMD software36. 
Statistical coupling analysis (SCA) was carried out using a MATLAB script obtained from Ranganathan lab. Normal mode analysis 
(NMA) was carried using the coarse-grained Anisotropic Network Model (ANM)21,37,38 using the bioinformatics server 
http://ignmtest.ccbb.pitt.edu/cgi-bin/anm/anm1.cgi.  MD simulations were carried out using NAMD39 and the all-atom 
CHARMM2240 force field. Principal component analysis was carried out using CARMA.41 The NMA and SCA plots and all data 
processing were carried out using MATLAB R2006b (The MathWorks Inc., Natick, MA).  
 
Statistical Thermal Coupling Analysis 
STCA was carried out in four discrete steps as described by Johnsons et al.35 First, SCA18,19 was performed to identify conserved 
and coevolved residues in the MetRS family. Next, the collective motions of various domains were studied by performing coarse-
grained NMA,21,37,38,42,43 as well as all-atom MD simulations. In the third step, the evolutionary dependence of the coupled-
domain dynamics was explored by integrating the results of SCA and NMA/MD, which resulted in a subset of residues that are 
simultaneously coupled through evolution and thermal motion. In the final step, networks of interacting residues between the two 
distant sites were identified from the pool of dynamically and evolutionarily coupled residues using Dijkstra’s algorithm.44 

 
Statistical Coupling Analysis 
SCA is based upon the assumption that the “coupling of two sites in a protein, whether for structural or functional reasons should 
cause those two sites to coevolve”.18,19 SCA was carried out using the protocol described elsewhere.18,20 Briefly, this method uses a 
multiple sequence alignment (MSA) of a protein family as an input file and quantifies the extent of residue conservation, as 
well as coevolution between two residues by calculating the change in the amino acid distribution at one position with 
respect to a perturbation at another position. In the present work, the MSA of 478 protein sequences of the MetRS family 
was constructed using PSI-BLAST.45 Only MetRS sequences that bear significant sequence identity (> 75 %) with Ec 
MetRS were included in this study. The conservation constant 

 
and the coupling constant  were obtained 

using standard procedures described previously.34,35  
 
Normal mode analysis 
Low-frequency (large-amplitude) motions are important for the biological function of a protein. NMA has been shown to be 
reliable in describing the large-scale conformation changes in biomolecules.27,46-48 In the present study, coarse-grained NMA was 
used in which a protein is simplified to a string of beads49  and each bead represents a C  atom.21,37,38 The NMA was performed 
using the Anisotropic Network Model (ANM), where fluctuations are anisotropic and the overall potential energy of the protein 
system is expressed as the sum of harmonic potentials between the interacting C  atoms.49  
 

                                                                                 Equation 1. 
     

 
In eq. 1,  represents the uniform spring constant,  and are the equilibrium and instantaneous distance between residues  
and , respectively, and is the -th element of the binary connection matrix of inter-residue (C  – C ) contacts. Based on an 
interaction cutoff distance of is equal to 1 if   and zero otherwise.37 Previous studies by Eyal et al. demonstrated that 
the 18 Å interaction cutoff resulted in a better correlation between experimental and calculated fluctuations.38 Therefore, a 18 Å 
cutoff has been used in the present study. The substrate-unbound enzyme; the crystal structure of monomeric Ec MetRS (residues 
3-549, PDB entry: 1QQT) was used. 
 The correlated or anti-correlated motions between C  atoms were analyzed by computing the dynamic cross-correlation 
matrix C, where the -th element 

 
represents the cross-correlation coefficient between fluctuations of residues at sites  and : 

           

                                                                                             Equation 2. 

 
The atomic (C ) displacements of residues i and j are represented by  and  respectively, and the angular brackets represent 
an ensemble average calculated over structures for combined normal modes.  
 
Molecular Dynamics Simulation 
MD simulations of Ec MetRS were performed using the X-ray crystal structure of Ec MetRS (PDB entry: 1QQT). All mutants 
were generated with the ‘Mutate Residue’ plug-in (version 1.3) of Visual Molecular Dynamics (VMD) version 1.9.1.36 Simulations 
were performed in water (TIP3P model)50 with substrate-free enzymes using the all-atom CHARMM27 force field40 within the 
NAMD package.39 Nonbonded interactions were truncated using a switching function between 10 and 12 Å, and the dielectric 
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constant was set to unity. The SHAKE algorithm51 was used to constrain bond lengths and bond angles of water molecules and 
bonds involving a hydrogen atom. The MD simulations were performed using isothermal isobaric (NPT) conditions. Periodic 
boundary conditions and particle mesh Ewald methods52 were used to account for the long-range electrostatic interactions. In all 
MD simulations, a time step of 2 fs was used. The pressure of the system was controlled by the implementation of the Berendsen 
pressure bath coupling53 as the temperature of the system was slowly increased from 100 to 300 K. During the simulations at 300 
K, the pressure was kept constant by applying the Langevin piston method.54,55 The WT and mutant proteins were solvated with 
water in a periodic rectangular box with water padding of 12 Å between the walls of the box and the nearest protein atom. The 
charge neutralization (with sodium ions) of the solvated system was performed with the VMD autoionize extension.36 The 
resultant systems were equilibrated by slightly modifying previously described procedures.56,57 All simulations were carried out 
with a 20 ps equilibration to minimize the amino acid side chain interactions followed by a 30 ns production MD run. The details 
of the MD simulation protocol were as described previously.58 To evaluate the statistical significance of the MD simulation 
analysis, three replicates were generated for each protein system, as described in the protein simulation studies by Roy and 
Laughton.59    
 
The correlated motions between residue pairs were studied by principal component analysis (PCA) of collective motions60 as 
described earlier.35,58,61 Following the method described in Johnson et al.,35 the last 25 ns of the MD simulation data were used to 
generate principal components of atomic (backbone C  atoms) fluctuations by Carma.41 The first three principal components, 
which represent the low-frequency (high-amplitude) collective motions, were used to perform cluster analysis. This analysis 
produced a new trajectory of conformations representing the predominant conformational fluctuations and were used for 
generating dynamic cross-correlation matrix C. The ij-th element,  in matrix C represents the cross-correlation coefficient 
between residue fluctuations at sites i and j during the simulation: 

                                                                                         Equation 3. 

The atomic (C ) displacements of residues i and j are represented by  and , respectively; the angular brackets represent 
ensemble averages, and  and  represent the standard deviations of these displacements.  

Integration of Evolutionary and Dynamic Information 
To trace the residue-residue interaction networks that play key role in facilitating coupled-dynamics between domains, we 
constructed a subset of residues that are both, evolutionarily and dynamically coupled.35 The motional coupling information, 
obtained from NMA, was integrated with the evolutionary conservation and coevolution dataset from the SCA. The conserved 
and coevolved residues were treated separately. The conserved and dynamically coupled residues were obtained by selecting only 
those residues that exhibit significant conservation (   0.5) as well as motional coupling (   0.8) with each other. The 
value of was set to  0.8 in order to obtain statistically relevant size of the evolutionarily conserved residues. The coevolved 
and dynamically coupled residues were obtained from the truncated C matrix, which was created by including only those columns 
that are present in the normalized SCA-derived G matrix. Next, a new matrix, the coevolutionary dynamic coupling (CDC) 
matrix, was created by multiplying each ij-th element of the G matrix with the corresponding element of the truncated C matrix: 

                                                                        Equation 4. 
 

Identification of interaction networks using dijkstra’s algorithm 
From the shortlisted residues, residue-residue interaction networks between W461 (C-terminal domain) and M134/F140 (CP 
domain) of Ec MetRS were identified using Dijkstra’s algorithm as described earlier.35,44 In this method, each C  atom of the 
protein backbone represents a node. The connectivity between two adjacent nodes [inter-residue (C  – C ) contacts] is described 
by a binary connection matrix P.35 The C  – C  distance matrix, D was created from the PDB file containing the Cartesian 
coordinates of all C  atoms of the Ec MetRS (PDB entry: 1QQT). Based on a C  – C  cutoff distance , is equal to 1 if  < 

 and zero otherwise.35,44 The interaction networks (pathways) between two functional sites were identified by varying the 
distance parameter,  and the statistical parameter, . 
 
Root-mean-square fluctuations 
 To determine if the motion of CP domain had undergone significant change upon mutation along the interaction networks, the 
slow dynamics of the CP domain due to a specific mutation was studied by performing PCA for the WT and mutant proteins. 
Root-Mean-Square fluctuations (RMSF) of C  atoms, averaged over three replicate simulations, were obtained for the WT and 
mutants. In these calculations, the last 25 ns of MD simulation data were used, each comprising an ensemble of 250,000 
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conformations.35 Similar to our previous work, an ensemble of 750,000 conformations, obtained by combining three replicate 
trajectories, was used to perform PCA for each of these protein systems. The first three clusters, which represent the predominant 
conformational fluctuations, were used in this study.  
 
RESULTS 
Conserved and coevolved residues 
 To identify the conserved residues, the value of each residue of the Ec MetRS sequence was calculated using SCA. , 
a quantitative measure of the conservation of a residue at the ith position of the sequence was obtained as a one-dimensional 
vector normalized to 1 kT* (Figure 2).  

In addition, the evolutionary coupling indices ( ) of a total 544 residues for 116 perturbation sites were obtained from a 
544×116 coupling matrix (Figure 3). It is evident that only a small fraction of Ec MetRS residues have high t 

 
values and 

those highly coupled residues were found to be located farther apart from each other in the three-dimensional structure of Ec 

Figure 3. Statistical coupling analysis of the MetRS family. The normalized statistical coupling matrix with one dimensional hierarchical clustering along the 
perturbation axis is shown. The highly coevolved residues are clustered at the bottom right of the diagram. The color gradient, as indicated in the color bar, is as 
follows: blue squares represent the lowest (0 kT*) and red squares represent the highest (1 kT*) statistical coupling energies. 

Residue  Number

Figure 2. A normalized plot of  vs. position (residue number) to identify conserved residues from SCA. The extent of evolutionary 
conservation, , of a residue at the ith position of the Ec MetRS sequence was determined by using the following equation: 

2
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x

xx
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where kT* is an arbitrary energy unit, is the binomial probability of observing amino acid x at site ,   is the probability of observing 
amino acid x in the overall MSA, and the summation is over all 20 amino acids. 
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MetRS (Figure 4). To explore the role of these conserved and coevolved residues in the long-range interactions, the dynamics of 
the protein segments and their motional coupling was examined. 
 

 
Normal mode analysis and flexible protein segments 
 The dynamic correlation between residues of the Ec MetRS was extracted from the NMA using a combination of the first 10 
lowest-frequency normal modes (modes 1-10), which are usually biologically more relevant. The identical flexible regions in the 
protein structure are evident from the plot of computed and the experimental (crystallographic)23 B-factors of C  atoms (Figure 
5). The study also revealed that the CP domain, especially residues 100-200, is the most mobile. Residues 56-71 in the Rossmann-
fold and 454-476 of the anticodon binding domain also exhibit significant mobility, which is consistent to the atomistic simulation 
study reported earlier.32,33 

 

 

 

Distance (Å)
Figure 4. The statistical coupling, Gistat for all residues plotted against their contact (C  - C ) distances. The extent of statistical coupling 
between two sites, i and j, of the MetRS protein sequence was estimated from a perturbation analysis, where a sub-alignment of the MSA was 
created using ~ 63% of the total number of sequences and the change in the extent of conservation was calculated. Mathematically, this is 
represented as a normalized statistical coupling matrix G, in which each ij-th element, Gi,jstat, measures the perturbation in the conservation 
of residue i due to residue j. G,jistat 

 
refers to the evolutionary (statistical) coupling between residues at two functional sites, i and j and is 

expressed as: 
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where  is the probability of x at site i being dependent on a perturbation at site j. A large statistical coupling value, , indicates 
strong energetic coupling between residues at the two sites i and j 1; 2 

Figure 5. C  B-factor analysis of Ec MetRS. Comparison of the C  B-factor obtained from the crystal structure (gray, 
dotted line) (PDB entry: 1QQT) and the calculated one (black, solid line) using ANM.   
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Analysis of the dynamic cross-correlation matrix (DCCM) obtained from the combined modes (1-10) revealed that various 
structural elements within the catalytic domain are engaged in correlated motions (Figure 6). The Rossmann-fold domain 
(residues 1-96 and 245-323) is engaged in strong correlated motion with the KMSKS domain (residues 324-384 and 536-547, 
Figure 6, black rectangles). In contrast, the CP domain (residues 125-200) moves in an anticorrelated pattern with respect to the 
Rossmann-fold (residues 1-96 and 252-323) and the KMSKS (residues 324–384) domains (Figure 6, red rectangles). The 
observed anti-correlated motion between the CP domain and the main body is significant as this anti-correlated motion provide 
an adequate space for the 3'-end of tRNA to enter into the synthetic active site for aminoacylation. Similar observations have been 
made in other class I aminoacyl-tRNA synthetases.34,62-64 Furthermore, the anticodon binding domain (residues 385-535) and the 
catalytic site (residues 1-96) exhibit anticorrelated motion (Figure 6, red ovals). The CP and the C-terminal domains (separated by 
a distance > 70 Å, Fig. 4, blue oval) are engaged in partly anticorrelated motion (Figure 6, black ovals). These observations are 
quite consistent with the earlier reported long time-scale (10 ns) MD simulation results,32,33 as well as the present MD simulation 
study (vide infra). Therefore, it is evident that the approximations in the coarse-grained NMA are capable of reproducing the same 

Figure 6. Correlations in fluctuations between residues (above diagonal) and their contact (C  – C ) distances (below diagonal). Dynamic cross-correlations 
between the C  atoms of the Ec MetRS (PDB entry: 1QQT) have been calculated based on the lowest 10 normal modes. A value of +1.0 was set for strongly 
correlated motion and is colored red, whereas -1.0 was used for the strongly anticorrelated motion and is colored blue. The axis values correspond to residue 
number and the color scale for contact distances is set between 0 – 100 Å; blue for residues in close contact and red for residues located farther away.  

Figure 7. RMSD of the C  atoms from their initial coordinate as a function of time for WT and the five mutants of Ec MetRS. 
Calculations of RMSDs were performed using 30-ns MD simulation data. 
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low-frequency dynamics of a large protein like Ec MetRS as obtained from the use of all-atom MD simulation.  

MD simulations 
30 ns MD simulation was carried out for the Ec MetRS to generate the dynamic cross-correlation matrix C. The quality of the 
simulation was first tested by computing the root-mean-square-deviation (RMSD) of the C  atoms from their initial coordinates. 
The RMSD obtained from the 30 ns MD simulation trajectory is shown in Figure 7 The C  RMSD values were observed to 
fluctuate with a mean value of 1.0-1.5 Å during the production period (30 ns) simulations. The dynamic cross-correlation matrix 
C of the WT enzyme (Figure 8) was generated using the first three principal components. Analysis of the cross-correlation of 
fluctuations of residues revealed both inter- and intra-domain dynamic correlations, which are very similar to those obtained from 
NMA. 
 

Generating residue pools that exhibit statistical and thermal coupling 
Results of thermal fluctuations were combined with those of the evolutionary constraints (conservation and coevolution) of 
residues. Conserved and coevolved residues were treated differently. In order to obtain a reliable set of residues that were 
dynamically coupled as well as highly conserved in the MetRS family, a controlled experiment was carried out by varying   
cutoff values and monitoring their distributions in various domains. For a specific  cutoff value, the number of conserved 
residues varies in each domain of Ec MetRS (Table 1). The study revealed that only ~ 15% of C-terminal residues are moderately 
conserved (   0.5) and exhibit strong motional coupling. In contrast, the Rossmann-fold domain, which is the catalytic 
domain, contains higher number of conserved residues (~ 40%) that are also dynamically correlated (Table 1). In the present 
study, subsets of conserved and dynamically correlated residues were generated by using a high dynamic coupling constant (  
0.8) and varying the conservation cutoff ( ) between 0.50-0.65 (Table 1). The cutoffs of these parameters were selected in 
order to obtain a reasonable size of residue pool consisting of statistically and thermally coupled residues 
 

Domain Gistat 
 0.5  0.55  0.60  0.65 

Rossmann-fold (residues 1-96 and 252-323) 72 56 44 32 

Connective polypeptide (residues 97-251) 66 57 49 36 

KMSKS (residues 324-384  and 536-547) 26 24 19 9 
C-terminal (residues 385-535) 29 22 16 12 

Total 193 159 128 89 

Table 1. Number of conserved residues in different domains of Ec MetRS obtained using various cutoff values for  . The dynamic coupling cutoff 
( ) was set to greater than or equal to 0.8. 
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Figure 8. Dynamic cross-correlation between the C  atoms of Ec MetRS as obtained from the a) combined first 10 low-frequency modes of 
NMA; b) 30 ns MD simulation; c) A color scale; a value of +1.0 represents a strongly correlated motion whereas -1.0 represents a strongly 
anticorrelated motion. 
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The coevolving and dynamically correlated residues were extracted from the coevolutionary dynamic coupling matrix CDC (eq. 
4), where  values range between –0.48 to 0.69 for NMA (Figure 9) and -0.74 to 0.70 for MD simulation (data not shown). 
In order to obtain a statistically significant set of residues, a systematic study was conducted using variable   cutoffs. This 
study resulted in subsets of residues with various degrees of statistical-thermal coupling and their distributions in different 
domains are reported in Table 2. In the present study, we have chosen the   cutoff value of 0.4, which resulted in a pool of 
76 residues.   
 
 

Domain Gistat 
 0.3  0.35  0.40  0.45 

Rossmann-fold (residues 1-96 and 252-323)(168 Total) 25% 19% 15% 11% 

Connective polypeptide 
(residues 97-251) (155 Total) 

23% 20% 15% 12% 

KMSKS 
(residues 324-384  and 536-547) (73 Total) 

33% 29% 20% 9% 

C-terminal 
(residues 385-535) (151 Total) 

28% 20% 10% 5% 

Total 27% 21% 14% 9% 

 
Interaction networks across domains 
To map interaction networks between C-terminal domain (W461) and CP domain (M134/F140), Dijkstra’s algorithm44 was `van 
der Waal’s radius of an amino acid C   is ~ 3 Å and the acceptable distance of non-covalent interaction between two interacting 
atoms is 2.0 3.0 Å, a strong non-covalent interaction occurs between two C  atoms of a folded protein when they are within a 
distance of 8.0-9.0 Å. Therefore, the distance cutoff, 

 
was varied between 8.0-9.0 Å to include only those neighboring C  

atoms that are engaged in strong non-covalent interactions and therefore could propagate site-to-site communications between 
distant domains.35 

 

Table 2. Percentage of coevolved residues within different domains of Ec MMetRS obtained 
using various cutoff values for  (eq. 4). 

Figure 9. The SCA•NMA plot obtained from the CDC matrix by multiplying individual elements of the SCA matrix with the corresponding elements of the 
truncated NMA matrix. Values range from +0.67 (coevolved and thermally correlated) to 0.47 (coevolved and thermally anticorrelated).  
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Several interaction networks were identified between W461 and M134/F140 by using various cutoff values for   and . 
Six contiguous interaction networks between C-terminal domain and CP domain are listed in Tables 3 and 4. These pathways 
(residue interaction networks) between W461 to M134/140 either pass through the -helix bundle (residues 385 to 535; pathways 
I and II) or the helix-loop-strand-helix motif (residues 352 to 385; pathways III - VI) (Figure 10). Very similar results were almost 
identical (Figure 10 and Tables 3 and 4). Moreover, analysis of SCA results revealed that conserved residues are dominant over 
coevolved residues in these predicted pathways (Table 3 and 4).  
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Table 3. Probable pathways of communication between W461 and M134 in the Ec MetRS. Residues in bold are coevolved and the rest are evolutionarily 
conserved. The residues that are different between MD and NMA predicted pathways are underlined. Values of the two parameters, and , are set to 
greater than or equal to 0.8 and 0.4, respectively. 
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Table 4. Probable pathways of communication between W461 and F140 in the Ec MetRS. Residues in bold are coevolved and the rest are evolutionarily 
conserved. The residues that are different between MD and NMA predicted pathways are underlined. Values of the two parameters, and , are set to 
greater than or equal to 0.8 and 0.4, respectively. 
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Essential dynamics analysis and role of pathway residues 
Recent studies have shown that the principal components obtained from long duration simulations (200ns) provide very similar 
description of the conformational change as that obtained from short duration simulations (10 ns).22 In this study, we have 
performed 30 ns simulations for the WT and various mutants to see the impact of mutation of pathway residues on the distant 
domain dynamics. Essential dynamics analysis of the WT protein was carried out using last 25 ns of 30 ns MD simulation data. 
The RMSF analysis reveals a flexible CP domain (residues 97-251, Fig. 11), similar to what was observed in coarse-grained (NMA) 
analysis (Figure 4). The CP domain, which is adjacent to the catalytic domain, is known to undergo conformational change upon 

tRNA binding at the anticodon domain and plays an important role in tRNA aminoacylation by guiding the acceptor stem 
towards the active site.24,33 Therefore, we hypothesized that a mutation of residues in the predicted pathways would cause a 
change in the CP domain dynamics. In the subsequent analysis, therefore, we investigated the dynamics of the CP domain 
(residues 97-251, shown in green in Figure 1 in response to mutations of a few selected residues in the predicted paths using 
MD-PCA analysis. 

W461 W461
W461

L13F140F140

M134
M134

Figure 10. Representation of residue-residue interaction networks between the anticodon binding domain (W461) and the CP domain identified in 
this study. The two terminuses, W461 and M134/F140, are shown in yellow space-filling surface representation. The secondary structure is shown in 
cartoon representation. From left to right, contiguous pathways as predicted by a) NMA-SCA (12 pathways, Tables 3 and 4), b) MD-SCA (12 
pathways, Tables 3 and 4) and C) MD-PSN (4 pathways, reference (33)) are shown in space-filling surface representations.  

M134

P14

Y358

W461

A361

0

1

2

3

0 100 200 300 400 500 600

F
lu

ct
ua

ti
on

 (Å
)

Residue Number

WT

A361C

M134A

P14A

Y358F

W461F

a) 

Figure 11. a) The 3D structure of Ec MetRS depicting the 5 sites of mutation, shown in color-coded beads, used for essential dynamics analysis. b) The 
replica-averaged root-mean-square fluctuations (RMSF) of individual amino acids of WT MetRS and the five variants. The RMSF of C  atoms calculated from 
the time-averaged structures over the last 25 ns of MD trajectories are shown. The calculated propagated uncertainties are 0.034 Å for WT, 0.049 Å for P14A, 
0.046 Å for M134A, 0.037 Å for Y358F, 0.046 Å for A361C, and 0.055 Å for W461F. 
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MD simulations were performed in triplicate for the WT and 5 mutants, namely, P14A, M134A, Y358F, A361C, and W461F for a 
period of 30 ns. These mutational sites are evenly distributed along the communication pathways (Figure 11a). The four mutants 
- P14A, M134A, Y358F, and W461F, were experimentally found to have significant impact in MetRS function24,65 (personal 
communication with Dr. R. W. Alexander). In addition, A361, which is only present in the NMA-derived pathway (Pathway 3) 
and was experimentally observed to have slight impact on the catalysis, was also chosen for this study.66 The stability of the 
dynamics was first evaluated by computing the RMSD of C  atoms along the simulated time (Figure 7). A sharp change of 
RMSD was observed in the initial 500-700 ps. Essential dynamics analysis were conducted on the 5-30 ns data, where the RMSDs 
were within 1.0 Å. The last 25 ns of MD simulation data were used to assess the quality of simulations by computing the RMSF of 
each amino acid from the time-averaged structure. The RMSF for each replica, as well as the replica-averaged fluctuations of the 
WT and the five MetRS variants, are reported in Figure 12 and Figure 11b, respectively. The RMSF data demonstrates that the 
backbone flexibilities are quite reproducible for each of these protein systems, with only a propagated uncertainty of 0.03 0.06 Å 
for the three replica simulations (Figure 11b). These results indicate that all simulations have reached equilibrated states.  
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Figure 12. Root-mean-square fluctuations of individual amino acids for WT MetRS and five variants. In each stacked plot, the rms fluctuations of C  atoms 
calculated from the time-averaged structures over the last 25 ns of MD trajectories are shown. Fluctuations for the three replicas are separated by 0.5 Å and 
color-coded for the sake of clarity: blue for replica 1, red for replica 2, and green for replica 3. In each case, the bottom plot (purple) represents the replica-
averaged rms fluctuations. The calculated propagated uncertainties are 0.034 Å for WT, 0.049 Å for P14A, 0.046 Å for M134A, 0.037 Å for Y358F, 0.046 Å 
for A361C, and 0.055 Å for W461F. 
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Next, we probed the impact of these mutations on the collective dynamics of the Ec MetRS. Following the method described in 
our earlier work,35 PCA was conducted using the combined 75 ns trajectory (last 25 ns of three replicates) for each protein system. 
The first three clusters representing the predominant collective dynamics were extracted. The RMSF of C  atoms were computed 
from their respective average structures, normalized, and averaged over the three clusters.35 The impact of mutation of on-
pathway residues on the protein flexibility was examined by computing the difference of these cluster-averaged RMSF between 
the WT and a specific MetRS variant (Figure 13). The RMSF analysis demonstrates that the overall flexibility of the protein 
backbone was altered due to the mutation of on-pathway residues.  

 
 
The RMSF analysis revealed that mutations of these “on-pathways” residues have altered the dynamics of the CP domain and 
other structural elements of this multi-domain protein. For example, alanine substitution of P14 resulted in increased dynamics of 
residues 324 to 336 and residues 364 to 378 of KMSKS domain (Figure 13a); residues of KMSKS domain are important for 
stabilizing methionyl-adenylate. Also, an increase in the CP domain dynamics was observed. However a sharp decrease in the 
fluctuation of the residue 209 of the CP domain was noticed in P14A variant.  

 
Mutation of M134 to alanine also demonstrated an increase in CP domain dynamics (Figure 13b). The RMSF analysis indicates 
decreased dynamics of the catalytically important Rossmann-fold domain. However, a small increase in flexibility of W253 of the 
methionine binding pocket was noticed. Decreased dynamics of the KMSKS domain and C-terminal domain was also observed.  
In the case of Y358F, an overall decrease in the dynamics of virtually every domain was observed (Figure 13c).  On the other 
hand, both increased and decreased fluctuations of various domains were noticed in the case of W461F (Figure 13d). Lastly, in 
the case of A361C mutant, where small impact in catalysis was experimentally observed, the fluctuation of the protein backbone 
was also altered by the alanine substitution (Figure 13e). Taken together, significant alternations in the dynamics of various 
structural elements were observed for these MetRS variants. These computational analyses demonstrated that mutations along the 
predicted pathways between the C-terminal and CP domain of MetRS do indeed alter the backbone fluctuations of the distant 
domains and secondary elements, which might resulted in reduced catalytic efficiency. 
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Figure 13. Changes in the normalized RMSF of C  atoms observed in the collective dynamics of the five mutants with respect to WT Ec MetRS. The angular 
bracket indicates that the RMSF are averaged over the first three clusters representing the predominant collective protein motions. The propagated 
uncertainties for each of these plots are within 0.04 Å and are shown with two parallel dotted lines.  
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DISCUSSION 
Protein dynamism and evolvability 
Dynamism is an intrinsic property of a protein, an inseparable element from its function, and encrypted in its primary structure. 
Therefore, amino acid residues that are critical for maintaining the protein's intrinsic functional dynamics should either remain 
conserved or their mutations will be correlated. The present study revealed the existence of multiple interaction networks, 
involving dynamically and evolutionarily coupled residues, between the CP domain and the C-terminal domain. Scrutiny of these 
networks of interactions showed that the involved residues are predominantly conserved in this protein family (Table 3). Only a 
small fraction of residues (10-26%, Tables 3 and 4) were found to be coevolving and these residues appeared to be important for 
forming a contiguous network of residue interactions between W461 and M134/F140. Thus, the present findings demonstrated 
that conserved residues are the key players in regulating distant domain dynamics, while the role of coevolved residues is only 
complementary. This is consistent with the observations in myosin motor protein67 and other protein systems19,35 indicating that 
integration of evolutionary information with dynamic coupling data is an important criterion for identifying interaction networks 
between distant functional sites. 
 
Cooperative dynamics between the two functional sites 
Previous biochemical and computational studies have established that the cognate anticodon binding at the C-terminal triggers the 
conformational change of the CP domain, which facilitates the binding of tRNA acceptor stem at the active site.24,33 Moreover, it 
has also been reported that the anticodon-triggered conformational change, which is important for efficient tRNAMet 
aminoacylation, propagates through the enzyme, not through the tRNA.33 Therefore, if the identified residue networks facilitate 
coupled-domain dynamics, then a mutation along these predicted pathways is expected to have an observable impact on the 
dynamics of the CP domain. This hypothesis was tested by the combined essential dynamics analysis performed on various 
mutant protein systems. The four mutants (P14A, M134A, Y358F, and W461F), which are resided on the residue interaction 
networks between C-terminal and CP domains, were found to have significant impact on catalysis. Also, mutation of A361 to 
cysteine has impact on the distant domain dynamics. The pair-wise RMSF comparisons of the WT and mutant variants portray 
the notable effects of discrete mutations along the interaction networks on the distant CP domain dynamics (Figure 13). The 
variation in the CP domain dynamics is somewhat related to the distance between the site of mutation and the CP domain. Taken 
together, the in silico mutational study illustrates the role of predicted interaction networks in maintaining the distant domain 
dynamics.  
 
Existing theoretical and experimental results 
The residue interaction networks (pathways I –VI) identified in the present bioinformatics study also bears a close similarity to 
previously reported communication pathways (between W461 to L13) obtained from the atomistic simulations and protein 
structure networks (PSN) analysis.33,68 However, unlike the previously reported pathways, pathways identified in the present study 
are contiguous. The involvement of the -helix bundle, which encompasses pathways I and II, as well as the helix-loop-strand-
helix motif (pathways III – VI) in domain-domain communication of Ec MetRS has  also been supported by earlier studies.66 
Therefore, the revelation of similar residue-residue interaction networks, as obtained from the use of two different strategies – i) 
MD and PSN33 and ii) MD/NMA and SCA, strongly suggests that the bioinformatics-based STCA method could be used as an 
alternative, fast yet robust method of predicting long-range communication pathways in multi-domain proteins. 
 
Results obtained in the present study also enable us to explain some of the previously reported experimental mutational results. 
Previous mutational studies have showed that the mutation of P460, N452, R395, N391 and R233 cause functional defects.24 
These residues actually belong to the predicted interaction networks and appeared to be important for promoting coupled-domain 
dynamics, which are essential for enzymatic function. Also, it has been reported that the mutation of N452 and N387 to alanine 
resulted in functionally defective mutants.69 Our studies show that these two residues are within the range of H-bonding 
interaction with K388, the residue present in three of the six pathways.   
 
Coarse-grained NMA and all-atom MD simulations 
Coarse-grained simulations have emerged as valuable tools for studying conformational changes in large biomolecules. Despite 
the fact that NMA implies infinitesimal displacements near the local energy minimum, recent studies have demonstrated that 
micro- to millisecond global motions can be modeled successfully with coarse-grained model.70 We have also demonstrated that 
coarse-grained NMA is comparable to the all-atom MD simulation in depicting the intrinsic global dynamics of AARSs including 
Ec MetRS.64,71 However, local fluctuations upon substrate binding were poorly captured by the coarse-grained simulations.71 
Although coarse-grained NMA failed to capture time-dependent fluctuations, it has been well-documented that NMA can provide 
relevant information regarding functional motions and allosteric mechanisms.22,72-75 Surprisingly, very similar results were obtained 
from both all-atoms MD simulation and coarse-grained NMA in the present study; four out of six pathways identified by MD and 
NMA are almost identical (Tables 3 and 4). The close similarities between the all-atom and coarse-grained simulations results 
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suggested that for large biomolecules like AARSs, computationally less intensive coarse-grained NMA could be used to trace the 
conformational transition (“population-shift”) pathways i.e. residue interaction networks between functional sites.  
 
CONCLUSIONS 
In the present study, pathways of inter-domain communication in Ec MetRS were identified by integrating evolutionary 
information with that of dynamic coupling. Several pathways (residue interaction networks) were identified through which local 
perturbation could propagate between two functional sites, 53 Å apart. Residues identified in these pathways are predominantly 
conserved and are also physically proximate in the structure. These residues are engaged in strong correlated dynamics. Long-
duration MD simulation study followed by essential dynamics analysis provided evidence that these residues are important in 
maintaining protein dynamics and their mutations are capable of altering the dynamics of protein segments over great distances, 
even across domain interfaces. Therefore, the present STCA method shows promise in identifying and exploring residues that 
mediate long-range inter-domain communications in large protein systems.  
 
The domain dynamics occur in micro- to millisecond timescale. Therefore, the atomistic simulation of a large protein is quite 
challenging. Although several hundred nanoseconds of simulations can be performed using the more advance computing systems, 
it remains quite challenging to simulate functionally important long-timescale collective dynamics of a large protein like Ec 
MetRS. Therefore, the use of coarse-grained method has substantially reduced the time for obtaining the information of thermal 
coupling from the collective dynamics of a large protein system like Ec MetRS. However, the coarse-grained simulation does not 
provide any information about the type of residues involved in coupled motions and statistical coupling analysis complements this 
by providing the data of residue-residue compatibility. Therefore integration of evolutionary information with dynamic features of 
residues could enable one to identify long-range interaction networks that are contiguous and critical for maintaining coupled 
dynamics in modular proteins.  

 
Taken together, the present STCA study has enabled us to identify a set of residues that are potentially involved in maintaining 
the coupled dynamics among domains in Ec MetRS. The present study also suggested that in order to facilitate long-range 
communication, multi-domain proteins like Ec MetRS use parallel pathways of residue interactions. This information can be used 
as a guide to explore more about these interaction networks and the role of intrinsic dynamics in the function of Ec MetRS 
through spectroscopic, mutational, and theoretical studies. In addition, the STCA method can be extended to other multi-domain 
proteins to gain molecular-level understanding of the domain-domain communications. Moreover, the present study suggested 
that the correlated motions derived from NMA can also provide insight into long-range inter-domain communication.   
 
ACKNOWLEDGEMENT 
Authors thank Dr. Ranganathan (University of Texas, Southwestern Medical Center, Dallas) for the MATLAB scripts used in the 
SCA. We would also like to thank Mr. Alexander Jerome Greene for his initial contributions in developing the STCA script. 
 
REFERENCES 
1. Bu, Z., Biehl, R., Monkenbusch, M., Richter, D., and Callaway, D. J. (2005) Coupled protein domain motion in Taq polymerase 

revealed by neutron spin-echo spectroscopy, Proc. Natl. Acad. Sci. U. S. A. 102, 17646-17651. 
2. Yu, H., Ma, L., Yang, Y., and Cui, Q. (2007) Mechanochemical coupling in the myosin motor domain. II. Analysis of critical 

residues, PLoS Comput. Biol. 3, e23. 
3. Chennubhotla, C., Yang, Z., and Bahar, I. (2008) Coupling between global dynamics and signal transduction pathways: a 

mechanism of allostery for chaperonin GroEL, Mol. Biosyst. 4, 287-292. 
4. Daily, M. D., and Gray, J. J. (2009) Allosteric communication occurs via networks of tertiary and quaternary motions in 

proteins, PLoS Comput. Biol. 5, e1000293. 
5. Fidelak, J., Ferrer, S., Oberlin, M., Moras, D., Dejaegere, A., and Stote, R. H. (2010) Dynamic correlation networks in human 

peroxisome proliferator-activated receptor-gamma nuclear receptor protein, Eur. Biophys. J. 39, 1503-1512. 
6. Zheng, W., Liao, J. C., Brooks, B. R., and Doniach, S. (2007) Toward the mechanism of dynamical couplings and translocation 

in hepatitis C virus NS3 helicase using elastic network model, Proteins 67, 886-896. 
7. Weinkam, P., Pons, J., and Sali, A. (2012) Structure-based model of allostery predicts coupling between distant sites, Proc. Natl. 

Acad. Sci. U. S. A. 109, 4875-4880. 
8. del Sol, A., Tsai, C. J., Ma, B., and Nussinov, R. (2009) The origin of allosteric functional modulation: multiple pre-existing 

pathways, Structure 17, 1042-1050. 
9. Tsai, C. J., del Sol, A., and Nussinov, R. (2009) Protein allostery, signal transmission and dynamics: a classification scheme of 

allosteric mechanisms, Mol. Biosyst. 5, 207-216. 
10. Changeux, J. P., and Edelstein, S. (2011) Conformational selection or induced fit? 50 years of debate resolved, F1000 Biol. Rep. 

3, 19. 



American Journal of Undergraduate Research 

 Volume 14 | Issue 2 | June 2017  42

11. Lee, Y., Mick, J., Furdui, C., and Beamer, L. J. (2012) A coevolutionary residue network at the site of a functionally important 
conformational change in a phosphohexomutase enzyme family, PLoS One 7, e38114. 

12. Nussinov, R., Tsai, C. J., and Ma, B. (2013) The underappreciated role of allostery in the cellular network, Annu. Rev. Biophys. 
42, 169-189. 

13. Tsai, C. J., and Nussinov, R. (2014) A unified view of "how allostery works", PLoS Comput. Biol. 10, e1003394. 
14. Gunasekaran, K., Ma, B., and Nussinov, R. (2004) Is allostery an intrinsic property of all dynamic proteins?, Proteins 57, 433-

443. 
15. Tsai, C. J., del Sol, A., and Nussinov, R. (2008) Allostery: absence of a change in shape does not imply that allostery is not at 

play, J. Mol. Biol. 378, 1-11. 
16. Popovych, N., Sun, S., Ebright, R. H., and Kalodimos, C. G. (2006) Dynamically driven protein allostery, Nat. Struct. Mol. Biol. 

13, 831-838. 
17. Daily, M. D., and Gray, J. J. (2007) Local motions is a benchmark of allosteric proteins, Proteins 67, 385-399. 
18. Lockless, S. W., and Ranganathan, R. (1999) Evolutionarily conserved pathways of energetic connectivity in protein families, 

Science 286, 295-299. 
19. Suel, G. M., Lockless, S. W., Wall, M. A., and Ranganathan, R. (2003) Evolutionarily conserved networks of residues mediate 

allosteric communication in proteins, Nat. Struct. Biol. 10, 59-69. 
20. Hatley, M. E., Lockless, S. W., Gibson, S. K., Gilman, A. G., and Ranganathan, R. (2003) Allosteric determinants in guanine 

nucleotide-binding proteins, Proc. Natl. Acad. Sci. U. S. A. 100, 14445-14450. 
21. Bahar, I., and Rader, A. J. (2005) Coarse-grained normal mode analysis in structural biology, Curr. Opin. Struct. Biol. 15, 586-

592. 
22. Skjaerven, L., Martinez, A., and Reuter, N. (2011) Principal component and normal mode analysis of proteins; a quantitative 

comparison using the GroEL subunit, Proteins 79, 232-243. 
23. Mechulam, Y., Schmitt, E., Maveyraud, L., Zelwer, C., Nureki, O., Yokoyama, S., Konno, M., and Blanquet, S. (1999) Crystal 

structure of Escherichia coli methionyl-tRNA synthetase highlights species-specific features, J. Mol. Biol. 294, 1287-1297. 
24. Blanquet, S., Crepin, T., Mechulam, Y., and Schmitt, E. (2005) Methionyl-tRNA Synthetase, Landes Biosciences/Eurekah.com, 

Georgetown, TX  
25. Martinis, S. A., and Schimmel, P. (1992) Enzymatic aminoacylation of sequence-specific RNA minihelices and hybrid duplexes 

with methionine, Proc Natl Acad Sci U S A 89, 65-69. 
26. Martinis, S. A., and Schimmel, P. (1993) Microhelix aminoacylation by a class I tRNA synthetase. Non-conserved base pairs 

required for specificity, J Biol Chem 268, 6069-6072. 
27. Alexander, R. W., Nordin, B. E., and Schimmel, P. (1998) Activation of microhelix charging by localized helix destabilization, 

Proc. Natl. Acad. Sci. U. S. A. 95, 12214-12219. 
28. Meinnel, T., Mechulam, Y., Blanquet, S., and Fayat, G. (1991) Binding of the anticodon domain of tRNA(fMet) to Escherichia 

coli methionyl-tRNA synthetase, J. Mol. Biol. 220, 205-208. 
29. Ghosh, G., Kim, H. Y., Demaret, J. P., Brunie, S., and Schulman, L. H. (1991) Arginine-395 is required for efficient in vivo 

and in vitro aminoacylation of tRNAs by Escherichia coli methionyl-tRNA synthetase, Biochemistry 30, 11767-11774. 
30. Ghosh, G., Pelka, H., and Schulman, L. H. (1990) Identification of the tRNA anticodon recognition site of Escherichia coli 

methionyl-tRNA synthetase, Biochemistry 29, 2220-2225. 
31. Meinnel, T., Mechulam, Y., Le Corre, D., Panvert, M., Blanquet, S., and Fayat, G. (1991) Selection of suppressor methionyl-

tRNA synthetases: mapping the tRNA anticodon binding site, Proc. Natl. Acad. Sci. U. S. A. 88, 291-295. 
32. Budiman, M. E., Knaggs, M. H., Fetrow, J. S., and Alexander, R. W. (2007) Using molecular dynamics to map interaction 

networks in an aminoacyl-tRNA synthetase, Proteins 68, 670-689. 
33. Ghosh, A., and Vishveshwara, S. (2007) A study of communication pathways in methionyl- tRNA synthetase by molecular 

dynamics simulations and structure network analysis, Proc. Natl. Acad. Sci. U. S. A. 104, 15711-15716. 
34. Weimer, K. M., Shane, B. L., Brunetto, M., Bhattacharyya, S., and Hati, S. (2009) Evolutionary basis for the coupled-domain 

motions in Thermus thermophilus leucyl-tRNA synthetase, J. Biol. Chem. 284, 10088-10099. 
35. Johnson, J. M., Sanford, B. L., Strom, A. M., Tadayon, S. N., Lehman, B. P., Zirbes, A. M., Bhattacharyya, S., Musier-Forsyth, 

K., and Hati, S. (2013) Multiple pathways promote dynamical coupling between catalytic domains in Escherichia coli prolyl-
tRNA synthetase, Biochemistry 52, 4399-4412. 

36. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: visual molecular dynamics, J. Mol. Graph. 14, 33-38, 27-38. 
37. Bahar, I., Atilgan, A. R., and Erman, B. (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter 

harmonic potential, Fold Des. 2, 173-181. 
38. Eyal, E., Yang, L. W., and Bahar, I. (2006) Anisotropic network model: systematic evaluation and a new web interface, 

Bioinformatics 22, 2619-2627. 
39. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., and Schulten, K. 

(2005) Scalable molecular dynamics with NAMD, J. Comput. Chem. 26, 1781-1802. 



American Journal of Undergraduate Research 

 Volume 14 | Issue 2 | June 2017  43

40. MacKerell, A. D. J., Bashford, D., Bellott, M., Dunbrack, R. L. J., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Gou, J., Ha, 
S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, 
B., Reiher, W. E. I., Roux, B., Schelenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanbe, M., Wiórkiewicz-Kuczera, J., Yin, 
D., and Karplus, M. (1998) Allatom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. 
B 102, 3586. 

41. Glykos, N. M. (2006) Software news and updates. Carma: a molecular dynamics analysis program, J. Comput. Chem. 27, 1765-
1768. 

42. Brooks, B., and Karplus, M. (1983) Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic 
trypsin inhibitor, Proc. Natl. Acad. Sci. U. S. A. 80, 6571-6575. 

43. Tama, F., and Sanejouand, Y. H. (2001) Conformational change of proteins arising from normal mode calculations, Protein 
Eng. 14, 1-6. 

44. Dijkstra, E. W. (1959) A note on two problems in connexion with graphs, Numerische Mathematik 1, 269-271. 
45. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and 

PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res. 25, 3389-3402. 
46. Yang, L. W., and Chng, C. P. (2008) Coarse-grained models reveal functional dynamics--I. Elastic network models--theories, 

comparisons and perspectives, Bioinform Biol Insights 2, 25-45. 
47. Skjaerven, L., Hollup, S., and Reuter, N. (2009) Normal mode naalysis for protein, J. Mol. Chem. THEOCHEM 898, 42-48. 
48. Ma, J. (2005) Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes, Structure 

13, 373-380. 
49. Atilgan, A. R., Durell, S. R., Jernigan, R. L., Demirel, M. C., Keskin, O., and Bahar, I. (2001) Anisotropy of fluctuation 

dynamics of proteins with an elastic network model, Biophys J 80, 505-515. 
50. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L. (1983) Comparison of simple potential 

functions for simulating liquid water, J. Chem. Phys. 79, 926. 
51. Ryckaert, J. P., Ciotti, G., and Berensden, H. J. C. (1977) Numerical integration of the Cartesian equations of motion of a 

system with constraints: molecular dynamics of n-alkanes, J. Comput. Phys. 23, 327-341. 
52. Darden, T., York, D., and Pedersen, L. (1993) Particle Mesh Ewald: An N. Log(N) Method for Ewald Sums in Large Systems, 

J. Chem. Phys. 98, 10089-10092. 
53. Berendsen, H. J. C., Postma, J. P., van Gunsteren, M. W. F., DiNola, A., and Haak, J. R. (1984) Molecular dynamics with 

coupling to an external bath, J. Chem. Phys. 81, 3684-3690. 
54. Feller, S. E., Zhang, Y., Pastor, R. W., and Brooks, B. R. (1995) Constant pressure molecular dynamics simulation: The 

Langevin piston method, J. Chem. Phys. 103, 4613-4621. 
55. Martyna, G. J., Tobias, D. J., and Klein, M. L. (1994) Constant pressure molecular dynamics algorithms, J. Chem. Phys. 101, 

4177-4189. 
56. Bhattacharyya, S., Ma, S., Stankovich, M. T., Truhlar, D. G., and Gao, J. (2005) Potential of mean force calculation for the 

proton and hydride transfer reactions catalyzed by medium-chain acyl-CoA dehydrogenase: effect of mutations on enzyme 
catalysis, Biochemistry 44, 16549-16562. 

57. Rauschnot, J. C., Yang, C., Yang, V., and Bhattacharyya, S. (2009) Theoretical determination of the redox potentials of 
NRH:quinone oxidoreductase 2 using quantum mechanical/molecular mechanical simulations, J. Phys. Chem. B 113, 8149-
8157. 

58. Sanford, B., Cao, B. V., Johnson, J. M., Zimmerman, K., Strom, A. M., Mueller, R. M., Bhattacharyya, S., Musier-Forsyth, K., 
and Hati, S. (2012) Role of coupled-dynamics in the catalytic activity of prokaryotic-like prolyl-tRNA synthetases Biochemistry 
51, 2146-2156. 

59. Roy, J., and Laughton, C. A. (2010) Long-timescale molecular-dynamics simulations of the major urinary protein provide 
atomistic interpretations of the unusual thermodynamics of ligand binding, Biophys. J. 99, 218-226. 

60. van Aalten, D. M., Amadei, A., Linssen, A. B., Eijsink, V. G., Vriend, G., and Berendsen, H. J. (1995) The essential dynamics 
of thermolysin: confirmation of the hinge-bending motion and comparison of simulations in vacuum and water, Proteins 22, 
45-54. 

61. Mueller, R. M., North, M. A., Yang, C., Hati, S., and Bhattacharyya, S. (2011) Interplay of flavin's redox states and protein 
dynamics: an insight from QM/MM simulations of dihydronicotinamide riboside quinone oxidoreductase 2, J. Phys. Chem. B 
115, 3632-3641. 

62. Silvian, L. F., Wang, J., and Steitz, T. A. (1999) Insights into editing from an ile-tRNA synthetase structure with tRNAile and 
mupirocin, Science 285, 1074-1077. 

63. Tukalo, M., Yaremchuk, A., Fukunaga, R., Yokoyama, S., and Cusack, S. (2005) The crystal structure of leucyl-tRNA 
synthetase complexed with tRNALeu in the post-transfer-editing conformation, Nat. Struct. Mol. Biol. 12, 923-930. 

64. Warren, N., Strom, A., Nicolet, B., Albin, K., Albrecht, J., Bausch, B., Dobbe, M., Dudek, M., Firgens, S., Fritsche, C., 
Gunderson, A., Heimann, J., Her, C., Hurt, J., Konorev, D., Lively, M., Meacham, S., Rodriguez, V., Tadayon, S., Trcka, D., 



American Journal of Undergraduate Research 

 Volume 14 | Issue 2 | June 2017  44

Yang, Y., Bhattacharyya, S., and Hati, S. (2014) Comparison of the Intrinsic Dynamics of Aminoacyl-tRNA Synthetases, 
Protein J. 33, 184-198. 

65. Alexander, R. W., and Schimmel, P. (2001) Domain-domain communication in aminoacyl-tRNA synthetases, Prog. Nucleic 
Acid Res. Mol. Biol. 69, 317-349. 

66. Banerjee, P., Warf, M. B., and Alexander, R. (2009) Effect of a domain-spanning disulfide on aminoacyl-tRNA synthetase 
activity, Biochemistry 48, 10113-10119. 

67. Tang, S., Liao, J. C., Dunn, A. R., Altman, R. B., Spudich, J. A., and Schmidt, J. P. (2007) Predicting allosteric communication 
in myosin via a pathway of conserved residues, J Mol Biol 373, 1361-1373. 

68. Ghosh, A., and Vishveshwara, S. (2008) Variations in clique and community patterns in protein structures during allosteric 
communication: investigation of dynamically equilibrated structures of methionyl tRNA synthetase complexes, Biochemistry 47, 
11398-11407. 

69. Alexander, R. W., and Schimmel, P. (1999) Evidence for breaking domain-domain functional communication in a synthetase-
tRNA complex, Biochemistry 38, 16359-16365. 

70. Gur, M., Zomot, E., and Bahar, I. Global motions exhibited by proteins in micro- to milliseconds simulations concur with 
anisotropic network model predictions, J Chem Phys 139, 121912. 

71. Strom, A. M., Fehling, S. C., Bhattacharyya, S., and Hati, S. (2014) Probing the global and local dynamics of aminoacyl-tRNA 
synthetases using all-atom and coarse-grained simulations, J. Mol. Model. 20, 2245. 

72. Cui, Q., Li, G., Ma, J., and Karplus, M. (2004) A normal mode analysis of structural plasticity in the biomolecular motor F(1)-
ATPase, J. Mol. Biol. 340, 345-372. 

73. Mouawad, L., and Perahia, D. (1996) Motions in hemoglobin studied by normal mode analysis and energy minimization: 
evidence for the existence of tertiary T-like, quaternary R-like intermediate structures, J Mol Biol 258, 393-410. 

74. Ma, J., and Karplus, M. (1998) The allosteric mechanism of the chaperonin GroEL: a dynamic analysis, Proc. Natl. Acad. Sci. U. 
S. A. 95, 8502-8507. 

75. Zheng, W., Brooks, B. R., and Thirumalai, D. (2007) Allosteric transitions in the chaperonin GroEL are captured by a 
dominant normal mode that is most robust to sequence variations, Biophys. J. 93, 2289-2299. 

 
ABOUT THE STUDENT AUTHOR 
Ryan Andrews recently graduated from the University of Wisconsin – Eau Claire and is currently a PhD student at Iowa State 
University in the department of Biochemistry, Biophysics and Molecular Biology where he continues to do similar research he 
found a passion for while an undergraduate. 
 
PRESS SUMMARY 
Proteins are the machinery of all living cells, and research is conducted every day to further our understanding of how they work.  
This paper compares two computational methods’ ability to study how different parts, or domains, of an individual protein 
“communicate” with each other, a phenomenon known as inter-domain communication.  We found that the less computationally 
demanding process known as coarse-grained analysis was comparable to the more demanding (though more theoretically 
accurate) process known as atomistic molecular dynamics in investigating inter-domain communications. 
 


