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ABSTRACT 

This paper is concerned with minimizing the cost of self-assembling DNA nanostructures by 
minimizing the number of different components used in the construction.  We first describe the 
nanostructures, then give a combinatorial formalization of the assembly process and demonstrate 
that the octet truss provides an accurate geometric framework for current branched junction 
molecule assembly.  We choose the octet truss because it is highly symmetric and has an 
appropriate number of edges for the application.  We develop a method of differentiating among 
branched junction molecules, the basic building blocks of the nanostructures, within this structure.  
In the mathematical model, we represent the branched junction molecules graphically with „tiles‟.  
We use this approach to find the minimum number of tiles necessary to construct Platonic and 
Archimedean solids naturally occurring within the octet truss.  This will be useful and cost efficient 
for the chemists and biologists who actually build these branched junction molecules because 
once a branched junction molecule is created, a lab can make many copies of it. 
 
I. INTRODUCTION 
 

Self-assembling nanostructure 
technology uses the self-replication and 
complementary chemical binding properties 
of DNA to create DNA molecules with a 
variety of non-linear structures such as ultra-
fine meshes and the skeletons of Platonic 
solids. This is an emerging technology with 
great potential and realized applications in 
bimolecular computing, drug delivery, and 
electronics [1,16,20,23].  A necessary step 
in the development of any self-assembling 

nanostructure is designing the component 
molecules.  The construction method 
considered in this paper uses components 
called branched junction molecules, which 
consist of several ”arms” or “branches” of 
DNA extending from a common center.  The 
active site at the terminus of an arm is called 
a “cohesive end” or “sticky end” [13,14,18].  
Several of these branched junction 
molecules attach to one another via base-
pairings at the ends of the branches to form 
the desired nanostructure. 

We have approached the problem 
by developing a method of categorizing 
these component molecules through 
combinatorial representations, which are 
called tiles.  The finalpartof this paper 
examines Platonic and Archimedean solids 
embedded in the octet truss. 
 
II. BIOLOGICAL BACKGROUND 
 
a. Branched Junction Molecules 
 

We aim to minimize the cost of 
producing DNA nonconstructs by minimizing 
the number of component molecules 
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required for their assembly.  Each 
nanoconstruct is assembled from branched 
junction molecules.  However, the creation 
of many distinct types of branched junction 
molecules costs time and money, thus the 
design for a particular structure that uses the 
fewest different types of molecules will likely 
be the most cost effective.  

The nanostructures that we consider 
here are structurally similar to wire-frame 
models [7]; that is, the structures consist of 
several lengths of DNA, corresponding to 
the edges of a graph that connect at certain 
points,  which may be thought of as vertices 
(see Figures 12 and 14).  There are a 
number of approaches to inducing self 
assembly [22].  We focus here on the 
branched junction method of assembly [20].  
Thus, we assume that each component 
molecule consists of some number of arms 
of DNA that extend from a central vertex and 
end with an active site with bonding 
specificity. 

We are interested in branched 
junction molecules that follow a specific set 
of structural guidelines which have been 
determined in part as a result of present 
production capabilities.  We assume here 
that the molecules have straight, rigid arms 
of unit length that are fixed with respect to 
the central vertex in two ways: first, the 
positions of the arms are fixed with respect 
to one another; second, the arms are fixed 
with respect to the configuration such that 
the active areas of the cohesive ends do not 
change position by twisting; that is, we are 
assuming that the arms do not experience 
twist strain, which is the compression or 
elongation of a DNA strand as a result of 
external forces [19].  Thus, DNA strands are 
either too short to curve or are reinforced for 
rigidity. 

These two assumptions are based 
on our understanding of the way that these 
molecules are designed.  For simplicity, our 
diagrams make it appear as though an arm 
consists of a single double helix molecule.  
However a design for a rigid arm may be 
more complex, for example, consisting of 
more than two strands of DNA, bonded 
together so that the arm itself is rigid and 
straight [19].  These arms begin at a central 
vertex and terminate with an active site, and 
we can discuss them as if they were the 
simpler versions presented in the diagrams 

because the added complexity does not 
change their combinatorial function. 

We consider only those molecules 
with up to twelve arms, because while it is 
theoretically possible to create branched 
junction molecules with an arbitrary number 
of arms, twelve is the current state of the art 
[20].  We also require that the final DNA 
structure be complete, that is, it must have 
no unmatched cohesive ends.   

We wish to design component 
molecules so that no complete structures 
smaller than the target structure may form.  
By a complete structure we mean that there 
are no unmatched arms in the target 
structure.  A design that does not allow 
smaller structures to form is better than one 
that does because the target structure is 
formed with the minimum number of tiles. 

We do this because if smaller 
structures can form them it is far more 
probable that they will, which means that 
most of the product will consist of these 
smaller structures.  Therefore, a design that 
does not allow smaller structures to form is 
better than one that does. 

 

b. DNA Background Information 
 

It is important to discuss some basic 
properties of DNA.  Deoxyribonucleic acid 
(DNA) is the material that many forms of like 
use to store genetic information.  DNA is 
double-stranded: that is, it consists of two 
chains that bond together to form a double 
helix, which looks something like a twisted 
ladder [22].  Two single strands cohere as a 
result of bonds between notrogenous bases 
protruding from each strand.  Each 
nitrogenous base is attached to a backbone 
of sugar and phosphate molecules which 
bond in a regular, repeating way to form one 
strand.  The information in DNA is stored as 
a code consisting of permutations of the four 
nitrogenous bases within the DNA molecule: 
adenine (A), guanine (G), cytosine (C), and 
thymine (T).  It is this sequence of bases in 
a strand of DNA that determines the 
information utilized by proteins to perform 
tasks like cell maintenance [9,16,17].  The 
nitrogenous bases in DNA bond to one 
another in a specific way: A bonds with T, 
and T bonds with G, to form units called 
base pairs, which are the rungs of the 
twisted DNA ladder,  In order for two strands 
to join, they must have complementary 
sequences of nitrogenous bases; that is, if 
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one strand is ATCGATG then the other 
strand must be TAGCTAC, so that each 
nitrogenous base is able to bond with a base 
in the opposite strand (see Figure 1).  A 
cohesive end of a branched junction 
molecule consists of a single-stranded 
fragment that extends past the double-
stranded part of an arm.  Self-assembly is 
then a result of the tendency of 
complementary single-strands to bond with 
one another, uniting half-edges to complete 
the structure. 
 

Definition 1.  A sticky end is an end of the 
DNA double-stranded helix with one strand 
extended longer than the other.  This allows 
for a complementary strand to attach. 

 

DNA is discrete, which means that it 
consists of distinct elements, and it is also a 
stable molecule.  It exhibits these 
characteristics because it must be able to 
store and then maintain information 
accurately over time.  These attributes can 
be made to serve other purposes.  DNA can 
be used to build nano-scale structures and 

to compute the solutions of problems [1,20].  
These uses for DNA are possible because 
the molecule will not break down easily or 
unexpectedly, and because the discrete 
nature of the molecule allows researchers to 
target parts of a strand or to design 
molecules that will bond in a specific way.  
Researchers in DNA nanotechnology and 
DNA computing are looking for ways to 
manipulate DNA so that they can create 
useful structures.  Current research is 
directed at developing certain structures that 
could potentially be used for targeted drug 
delivery [15] or for developing both 
nanoelectronics or biochip technology.  
Several different nanostructures have been 
constructed for self-assembling DNA 
strands,   including    cubes  [4],    truncated 
octahedra [24], rigid octahedra [21], and 
buckyballs [12]. 

 

c. Problem Summary 
 

Given a target geometrically realized graph, 
determine the minimum number of branched  

 
 
 

 
 
Figure 1.  A depiction of double-stranded DNA.  This figure shows the nitrogenous bases in DNA: 
adenine (A), thymine (T), guanine (G), and cytosine (C).  We should notice that A bonds with T 
and that T bonds with G. 
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Figure 2.  A depiction of the typical four-
armed tile. 
 
 
junction molecules necessary to form a 
complex with the same structure as the 
target graph, subject to the following 
constraints: 
 

1. Arms of branched junction 
molecules are straight, rigid, and of 
unit length. 

2. The geometric positions of the arms 
are fixed about a vertex. 

3. The arms do not experience twist 
strain. 

4. No branched junction molecule has 
more than twelve arms or less that 
two arms. 

5. Final DNA structures must be 
complete, that is, have no 
unmatched cohesive ends. 

6. No design may allow structures 
smaller than the target structure to 
form. 

 
III. MATHEMATICAL BACKGROUND 
 
a. Tiles 
 
Definition 2.  A tile is a graphical 
representation of a branched junction 
molecule with cohesive or sticky ends at the 
end of each arm (see Figure 2).  It consists 
of a vertex with a number of labeled half-
edges in a fixed geometric arrangement 
about the vertex.  When two arms are 
bonded together, they will be referred to as 
an edge. 
 

Each tile has three separate 
characteristics which determine its 
composition.  These are the configuration of 
arms about the central vertex, the particular 
permutation and identities of the cohesive 
ends of the arms, and the attachment angles 

of a particular tile with respect to those with 
which it may attach.  Problem formulation 
necessitates a method of communicating 
and manipulating these three 
characteristics. 
 
b. Parity Proposition 
 

Cohesive ends of a branched 
junction molecule are encoded by cohesive 
end types (letter-labels on the tiles) such 
that a cohesive end labeled with an un-
hatted letter can adjoin to a cohesive end 
labeled with its complementary hatted label 

(e.g., cohesive end types  and  represent 

complementary strands of bases and so 
could form a bond-edge.)  A target structure 
is constructed fromthese branched junction 
molecules where the arms are joined by 
complementary bases on the sticky ends.  
For our purposed, we only wish to consider 
those DNA complexes which are complete, 
meaning they have no unmatched sticky 
ends.  This brings us to the idea of a pot for 
our mathematical design. 
 

Definition 3.  A pot P is a set of tile types 

such that for each cohesive end of type  

that appears in any tile , there exists 

a cohesive end of type  (its complement) in 

some tile  (possibly I =j) [3]. 
 

Proposition 1.  If P is a pot = {t1…tn}, and 

each tile tj has Ai, j cohesive ends of type  

and  cohesive ends of type , then the 

observations below are immediate 
consequences of requiring complexes to be 
complete. 
 

a) A graph G with n vertices may be 
realized by the pot P only if there 
are non-negative integers rj for j = 
1…p (representing the number of 
times each tile of type tj is used in 
the construction of G) with 

 and such that 

 for all i.  

That is, the number of hatted sticky 
ends of each type used in the 
construction of G must equal the 
number of cohesive sticky ends of  
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Figure 3.  An example of a pot of tiles, P, which can form both complete and incomplete 
structures.  The bottom left figure is made up of tile 1 and tile 2 from the pot P.  It is complete 

because the three arms of tile 1 have complementary arms found on tile 2.  In particular,  bonds 

with ,  bonds with , and  bonds with .  The bottom right figure is incomplete because is has 

three extra arms that do not have a complementary sticky end.  Namely the cohesive ends , , 

and  are left unmatched.  If tile 4 is attached to this figure, a complete structure is formed. 
 

 
the same type that appear in the 
construction. 

b) The total number of hatted cohesive 
end types must equal the total 
number of unhatted cohesive end 
types in a complete complex.  While 
trivial, this observation will be equal 
in parity arguments. 
 

c. The Octet Truss 
 

The geometric attributes of our 
design prompt us to turn to the octet truss of 
R. Buckminster Fuller [10].  We will consider 
structures in the octet truss that are 
composed of vertices and edges running 
between these vertices.  The octet truss 
consists of regular tetrahedra and 
octahedra, and it is the only way to tile 
three-space in a semi-regular way (see 
Figure 4).  Note that the angle formed by 
any two edges must be π/3, π/2, 2π/3, or π 
radians.  The π/2 right angles are created by 
two edges incident to the same vertex on 
the equator of an octahedon [6].   

The design constraints outlined in 
Section II c lead  us to consider structures in 
the octet truss.  The octet truss is ideal 
because no vertex in the octet truss can 
ever have more than twelve arms, because 

all the edges are rigid and of unit length, the 
edges are distributed relatively evenly about 
the center vertex, and because the octet 
truss is highly symmetric. 

 
d. Configuration 

 
We will begin by developing a 

system of categorizing tiles by the geometric 
configuration of their atoms.  These 
configurations around the different tiles in a 
target structure are forced, that is, if a tile 
has a specific target complex embedded in 
the octet truss, each tile‟s configuration is 
determined.  Otherwise, the structure would 
not be completely determined. 

The half-edges around any vertex in 
the octet truss may be divided into sets by 
grouping them such that all the half-edges in 
a particular set are in the same plane.  
Careful inspection will show that it is 
impossible to find just two planes which 
contain all the half-edges; therefore, it is 
necessary to use at least three planes.  
Another important point is that, considering 
the sets of arms in particular planes, if one 
crosses two planes at random, it is often 
true that  the  sets  are   not   disjoint.      To 
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Figure 4. A subset of the octet truss.  There 
are only four angles that will be formed by 
any two edges in this figure: 60°, 90°, 120°, 
and 180°. 
 

 
Avoid naming half-edges in a way that  
might  lead to having more than one name 
for any one half-edge, we must choose the 
three planes containing four half-edges, with 
each arm orthogonal to the half-edges 
immediately to its left and right.  Then we 
may name the planes with the Greek letters 
α, β, and γ, and give each arm in each plane 
a number between one and four, inclusive.  
The outcome is that each half-edge has a 
label consisting of a Greek letter and then a 
number.  To number the vertices, we choose 
a half-edge and label it α1.  The α-plane is 
then labeled arm by arm with increasing 
numbers in a clockwise direction when 
looking at it from the top.  We define up to 
be the direction of any vector perpendicular 
to the α-plane and away from the region in 
space created by the α-plane and containing 
the β1 and γ1 half-edges.  These two half-
edges are the two closest to α1 and below 
the α-plane.  β1 is closer to α4 than γ1.  The 
β and γ-planes are then labeled with 
increasing numbers such that β2 and γ2 are 
above the α-plane (see Figure 7). 

We refer to this construction as a 
labeling cage.  To name a configuration, we 
place it in the labeling cage so that the arms 
are in the lexicographically minimal position 
(see Figures 7 and 8).  Based on a tile‟s 
lexicographical labeling, we classify the tiles.  
We now find all the configurations of two 
and three arms about a vertex so that we 
can know what possibilities there are when 
we are trying to minimize the number of tiles 
needed to build a DNA structure. 

 

e. The Problem of Orientation 
 

Fixing the geometry of the arms 
about the central vertex of a tile means that 
the cohesive end of the arm is oriented in a 
certain way in the branched junction 
molecule being represented.  Any fixed arm 
that bonds to it will be oriented in a particular 
way, resulting in the two tiles being oriented 
in only one way with respect to one another.  

  
 

 
Figure 5. The basic unit of the octet truss.  
The left, shaded area of the figure is a 
tetrahedron and the right side of the figure 
forms an octahedron.  This picture illustrates 
some of the symmetry found in the octet 
truss. 
 

 
Figure 6. A horizontal layer of the octet 
truss.  This figure continues infinitely, 
repeating the tetrahedron and octahedron 
shapes in all directions. 
 

 
Figure 7.  This figure represents our 
labeling convention for all twelve arms of a 
single vertex in the octet truss.  We denote 
the arms with Greek letters and numerical 
subscripts: α1,…,α4, β1,…,β4, γ1,…,γ4. 
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Figure 8.  This is a schlegel diagram of the 
cuboctahedron formed by the vertices 
adjacent to a single vertex in the octet truss 
and the edges between these vertices.  The 
labels correspond to the endpoints of the 
arms in Figure 6. 
 
 

This presents a problem because, 
even if two tiles have the same configuration 
and cohesive ends, they may bond to a third 
tile type along the same bond-edge in 
different ways such that different 
orientations result (see Figure 9).  The two 
tiles would therefore be different tiles simply 
because their arms are fixed in different 
ways, resulting in molecules with different 
geometries.  In each of our constructs we 
must check the way tiles are oriented in 
respect to one another. 

In order to address orientation, we 
check any construction of a target structure 
to make sure that the design is possible.  
We number the arms of every tile in the pot 
for a particular structure and make sure that 
any bond using the same arms always 
orients the two tiles in exactly the same way.  
We define the bond angle formally below. 
 

Definition 4.  Let T1 and T2 be two different 
tiles found in the octet truss, written in 
lexicographical minimal order, and let ε1 , ε2 

 {α1,…,α4, β1,…,β4, γ1,…,γ4} with ε1 an arm 
of T1 and ε2 an arm of T2.  Further suppose 
that ε1 and ε2 have complementary sticky 
ends so that the tile T1 and T2 may adjoin. 
Now let σi be the lexicographical minimal 
arm of Ti omitting εi and its antipodal arm 
(antipodal meaning that the two edges do 
not form a 180° angle between them). Write 

P(εi,σi) for the plane through εi and σi.  Then 
the bond angle between (T1, ε1) and (T2, ε2) 
is the angle formed between the two planes 
P(ε1, σ1) and P(ε2, σ2). 
 

Definition 5. Two branched junction 
molecules are called similar if their arms 
have the same configuration and cohesion 
end types. 
 

Definition 6.  Two branched junction 
molecules are called equivalent if they are 
similar and if their bond angles with any 
other tiles are identical. 
 
f. Geometric Configuration of Tiles 
 
Theorem 1.  There are four unique two-
armed configurations within the constraint of 
the octet truss. 

Proof. Two half-edges and a central 
vertex form an angle.  There are four 
different angles (π/3, π/2, 2π/3, and π) 
that can be formed by two arms incident 
to the same vertex.  Therefore, there are 
exactly four unique two-edge 
configurations.       □ 

 

Our main tool for proving that we 
have all the three-armed configurations will 
be the orbits and stabilizers theorem for the 
symmetry group of a geometric object.  The 
orbit of a tile is the set of positions it is 
moved to by the symmetry group, i.e. the 
other locations in the cuboctaheron where it 
“fits”.  The stabilizer of a tile is the subgroup 
of the symmetry group that fixes the tile.  
The product of the sizes of the orbit and 
stabilizer is the size of the symmetry group 
[11]. 

The symmetry group of the 
cuboctahedron is the chiral symmetry group 
of the cube and the octahedron, and is or 
order twenty-four [5].  There are the 
rotations of order four about the center of 
each face, the rotations of order three about 
the center of each vertex, and the rotations 
of order two about the line from the midpoint 
of an edge to the midpoint of its antipodal 
edge. 

We must first contend with the 
problem of the 2π/3 angle.  
Lemma 1.  If a planar configuration contains 
an angle of 2π/3, then there are in fact two 
identical configurations that must be 
considered when considering the orbits and 
stabilizers of these configurations. 
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Figure 9.  This figure illustrates four similar tiles.  However, the bond angle between tiles A and B 
is different than the bond angle between tiles C and D.  This becomes important when creating 
final structures. 
 

 
Proof.  Consider removing a cuboctahedron 
with edges of unit length from the octet 
truss.  At its center is a vertex which is 
connected to every other vertex that we 
removed (see Figure 8).  The outer vertex 
connected to the α1 arm of the central vertex 
is at the corners of two triangular faces of 
the cuboctahedron.  The only element of the 
chiral symmetry group which moves these 
triangles such that their position are 
exchanged is a rotation by π radians about 
the axis through the central vertex and its α1 
arm.  There is no group element that can 
reverse the corners of the triangles that are 
away from the α1 half-edge while keeping 
the triangles on their respective sides of the 
α1 half-edge.  Notice that an angle of 2π/3 is 
created in selecting the central vertex and 
the half-edges that point toward two corners 
of the triangles so that the α1 arm is not 
selected, thus the two selected arms are not 
in the same categorization plane,  This 
angle cannot be rotated onto every other 
angle around the central vertex because the 
triangles cannot be flipped, as mentioned 
above.  From the point of view of orbits and 
stabilizers, any planar configuration with a 
2π/3 angle in it must actually be considered 
twice because it appears twice, even though 
it is exactly the same configuration.  See 
Figure 10 for a depiction of this proof.      □ 
Theorem 2. There are ten unique geometric 
configurations comprising three half-edges 

and a vertex of the octet truss. (See Table 
2.) 
 

Proof.  There are seven configurations that 
have only the identity as a stabilizer 
(1,2,3,4,6, 8; see Table 3), so each of those 
has configurations has an orbit of order 
twenty-four.  There are three configurations 
which have the identity and a rotation by π 
radians as stabilizers (5, 10, and the 
necessary duplicate of 100; hence, each of 
those has an orbit of order twelve.  One 
configuration has three stabilizers and an 
orbit of order 8 (7).  Finally, there are two 
configurations with  six  stabilizers  each  (9, 
and the necessary duplicate of 9); thus, they 
each have an orbit of order four.  The sum of 
the orders of the orbits equal 220, which is 
precisely  

, 

or the number of way to choose three 
different edges about a central vertex from 
twelve total edges.  There are thirteen 
different configurations listed above, but 
three of these configurations are identical to 
one other member of the set of 
configurations, as discussed in Lemma 1. 
Therefore, there are ten unique 
configurations of three edges and a central 
vertex inside the octet truss.   □ Determining 
the possible configurations in a like manner 
for 4 through 12 arms is a topic of future 
work. 
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arm 
 

x-coordinate y-coordinate z-coordinate 

α1 0 1 0 
 

α2 -1 0 0 
 

α3 0 -1 0 
 

α4  1 0 0 
 

β1 -½  ½ 
 

-1/√2 

β2 -½ ½ 
 

1/√2 

β3 ½ 
 

-½ 
 

1/√2 

β4 ½ 
 

-½ 
 

-1/√2 

γ1 ½ 
 

½ 
 

-1/√2 

γ2 ½ 
 

½ 
 

1/√2 

γ3 -½ 
 

-½ 
 

1/√2 

γ4 -½ 
 

-½ 
 

-1/√2 

 

Table 1.  Coordinates of Arms in the Octet Truss 
 

 
 

1.  α2 β1 
2.  α2 β2 
3.  α4 β1 
4.  α4 β3 
5.  α2 α3 
6.  α3 β1 
7.  β1 γ1 
8.  β3 γ3 
9.  β3 γ4 
10.  β1 γ2 

 
Table 2.  There are ten possible unique 
configurations of three half-edges incident to 
a single vertex in the octet truss.  Note that 
the half-edge α1 is assumed to be one of the 
edges in each of the configurations. 
 
 
g. Mathematical Design Constraints 
 

We identify Platonic and 
Archimedean solids embedded in the octet 
truss to determine structures that can be 
made with just one or two tile types.  We 
give the minimum number of tile types 
required to build these structures subject to 
the following design constraints: 
 
1. Tiles conform to the geometry of the 

octet truss as follows: 
a) Arms are of unit length. 

b) Tiles have between 2 and 12 arms. 
c) Arms are straight, rigid, and in a 

fixed position about the vertex. 
d) Angles between the arms are either 

π/3, π/2, 2π/3, or π radians. 

2. At the end of each arm is a letter which 
will only attach to its complementary end 

(i.e.,  and  are complimentary arms). 
3. Final structures must be complete, that 

is the figures cannot have any 
unmatched arms. 

Determining the possible configurations in a 
like manner for 4 through 12 arms is a topic 
of future work. 
 

h. Mathematical Design Constraints 
 

We identify Platonic and 
Archimedean solids embedded in the octet 
truss to determine structures that can be 
made with just one or two tile types.  We 
give the minimum number of tile types 
required to build these structures subject to 
the following design constraints: 
 

1. Tiles conform to the geometry of the 
octet truss as follows: 
a) Arms are of unit length. 
b) Tiles have between 2 and 12 arms. 
c) Arms are straight, rigid, and in a 

fixed position about the vertex. 
d) Angles between the arms are either 

π/3, π/2, 2π/3, or π radians. 
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Figure 10.  in Diagram 1, arms β1 and γ3 are removed from the Schelgal diagram.  In Diagram 2, 
arms β4 and γ2 are removed.  Diagram 3 depicts a tile comprised of arms α1 and β3 which can 
rotate to fit either Diagram 1 and 2.  This occurs because there is an angle of 2π/3 between each 
of these arms. 
 
 

2. At the end of each arm is a letter which 
will only attach to its complementary end 

(i.e.,  and  are complimentary arms). 
3. Final structures must be complete, that 

is the figures cannot have any 
unmatched arms. 

4. No design may allow structures smaller 
than the target structure to form. 

 

IV. SOME PLATONIC AND 
ARCHIMEDEAN SOLIDS 

 

We will now find provably optimal 
strategies for all of the Platonic and 
Archimedean solids that naturally occur in 
the octet truss: the tetrahedron, the 
octahedron, the truncated tetrahedron, the 
truncated octahedron, and the 
cuboctahedron.  These solids are contained 
as subgroups within the octet truss.  Thus, 

they automatically satisfy the design 
constraints in Section II c, and are promising 
candidates for DNA self-assembly.  Indeed 
the cube [4], the octahedron [24], and the 
truncated octahedron [21] have already 
been built, albeit using other assembly 
methods.  However, buckyballs use 
“dendtrite” structures that are essentially 
three-armed branched junction molecules 
[12].  The remaining Platonic and 
Archimedean solids can only be realized as 
homeomorphic copies in the octet truss, and 
we leave this for future work. 

 
a. Tetrahedron 
 

Theorem 3.  A tetrahedron may be 
constructed with a minimum of two tile 
types. 
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Tetrahedron: 2 tiles required 
 

Tile Types Used in Construction 

Tile Type 1 
 

Tile Type 2 

α1 
 

 

β1 
 

 

γ1 
 

 

α1 
 

 

β1 
 

 

γ1 
 

 
  

Octahedron: 1 tile required 
 

Tile Type Used in Construction 

α1 
 

 

α4 
 

 

β1 
 

 

β2 
 

 
  

Cuboctahedron: 1 tile required 
 

Tile Type Used in Construction 

α1 
 

 

α4 
 

 

β1 
 

 

β4 
 

 
  

Truncated Tetrahedron: 2 tiles required 
 

Tile Types Used in Construction 

Tile Type 1 
 

Tile Type 2 

α1 
 

 

β1 
 

 

γ3 
 

 

α1 
 

 

β1 
 

 

γ3 
 

 
  

Truncated Octahedron: 2 tiles required 
 

Tile Types Used in Construction 

Tile Type 1 Tile Type 2 
 

α1 
 

 

α4 
 

 

β3 
 

 

α1 
 

 

α4 
 

 

β3 
 

 
 

Table 4.  A summary of Results for Platonic and Archimedean Solids.  Note: the Greek letters 
represent the arm positions and the hatted and unhatted letters represent cohesive end types. 
 
 

Proof.  The tetrahedron is made up of four 
vertices, six edges, and four equilateral 
triangles for faces.  It requires four tiles with 
three arms each.  By Proposition 1, the 
tetrahedron requires at least two tile types 
for its construction because the vertices are 
of degree three.  We now present a 
construction that requires precisely two tile 
types, and does not permit the residual 
construction of smaller complete constructs. 
Both tile types have the geometric 
configuration of α1 β1 γ1. 
 

Tile Type One consists of three 

cohesive ends of type  (see Figure 11). 

Tile Type Two consists of one cohesive 

end of type , one of type , and one of 

type  (see Figure 11). 
 

We have shown a construction which 
demonstrates that the absolute minimum we 
began with is achieveable under our present 
constraints (see Figure 13).  We therefore 
have proven that the minimum number of tile 
types required to construct the tetrahedron 
is two.         □ 
 
b. Octahedron 
 

Theorem 4.  An octahedron may be 
constructed with a minimum of one tile type. 
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   Tile 1      Tile 2 

 
 

Figure 11. The two different tile types used in construction of the tetrahedron.  They have the 
same geometric configuration, but have different cohesive ends. 
 
 
Tetrahedron Assembly            Tetrahedron 

 
Figure 12.  This is a depiction of a way that the tetrahedron might assemble from the four tiles 
used in this construction.  Note that while the order of assembly might differ from tetrahedron to 
tetrahedron, the final structure is always the same. 
 
  
 
 

 
 
Figure 13.  This diagram illustrates the construction part of the proof for the tetrahedron. 

      Tile 1 & 2 Configuration: α1 β1 γ1 
      Arm   Possible  

Complementary 
Bond Arms 
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Proof. The octahedron is made up of six 
vertices, twelve edges, and the faces 
are eight equilateral triangles.  It 
requires six tiles with four arms each.  
By Proposition 1, the octahedron 
requires at least one tile type for its 
construction because the vertices are of 
degree four.  We now present a 
construction that requires only one tile 
type.  
 

The Tile Type for the Octahedron has 
the configuration α1 α4 β1 β2 , two 

cohesive ends of type , and two 

cohesive ends of type  such that the 

two α-ends have the same cohesive end 
type and the two β-ends have the same 
cohesive end type.  Furthermore, this 
tile is symmetric with respect to arm 

orientation so that the two -arms are 

equivalent in every way.  The same is 

true for the -arms. 
 

Because there is only one tile type, every tile 
must bond to another copy of itself.  For any 
arm, there are two different arms that it can 
bond to on another tile.  However, each 
bond will orient the two involved tiles in 
exactly the same way because the tile is 
symmetric.  This means that any six tiles of 
this type will form an octahedron (see 
Figures 15).  Notice that attachment angles 
make it impossible to form smaller or larger 
complete structures from these tiles. 
 

We have shown a construction which 
demonstrates that the absolute minimum we 
began with is achieveable under our present 
constraints (see Figure 15).  We therefore 
have proven that the minimum number of 
tiles required to construct the octahedron is 
one.         □ 
 
c. Cuboctahedron 
 

Theorem 5. A cuboctahedron may be 
constructed with a minimum of one tile type.  
 

Proof.  The cuboctahedron has twelve 
vertices, twenty-four edges, and the faces 
are eight equilateral triangles and six 
squares.  It requires twelve tiles with four 
arms each.  By Proposition 1, the 
cuboctahedron requires at least one tile type 
for its construction because its vertices are 
of degree four.  We now present a 
construction that requires only one tile type.  

 

The Tile Type for the Cuboctahedron 
has the configuration α1 α2 β1 β4, the two 

cohesive ends of type , and two 

cohesive ends of type  such that the 

two α-ends have different cohesive end 
types and the two β-ends have different 
cohesive end types (see Figure 16).  

The two -arms also have the same 

attachment angle with any arm and 

hatted arm and vice versa.  The -arms 

also have the same arm orientation.  

Any  to  bond therefore orients its 

involved tiles so that their positions with 
respect to one another are congruent to 
the positions of the tiles in every 
equivalent bond. 

 

Because there is only one tile type, every tile 
must bond to another copy of itself,  For any 
arm, there are two different arms that it can 
bond to on another tile.  However, each 
equivalent bond will orient the two involved 
tiles in exactly the same way as noted 
above.  Notice that it makes a difference 

where the  and  are located: that is, if we 

think of a bond as a vector directed along 

the bond edge from  to  then the 

positions of involved tiles depend on which 
way the bond is pointing in space.  Also 
notice that the tile has rotational symmetry 
of π radians about the axis passing through 
its central vertex and orthogonal to the plane 
formed by the four endpoints of its arms.  
This means that even though there are 
many ways that these tiles could assemble 
to form a cuboctahedron, any number of 
tiles in the final structure could be removed, 
rotated about it axis of symmetry, and then 
replaced without changing the overall 
structure.  This means that the overall 
structure of the cuboctahedron must form 
from these tiles because any combination of 
tiles within the restraint forms a 
cuboctahedron. This means that any twelve 
tiles of this type will form a cuboctahedron 
(see Figure 17).  Notice that it is impossible 
to form any other complete structures from 
these tiles. 
 
We have shown a construction which 
demonstrates that the absolute minimum we 
began with is achieveable under our present 
constraints.  We therefore have proven that 
the minimum number of tiles required to 
construct the cuboctahedron is one. 
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□ 
 

 

 
 

Figure 14.  The construction of the octahedron.  We start with one four-armed tile consisting of   

and   cohesive ends.  Then another tile of the same configuration is bonded to the first tile.  This 

process of adding tiles continues until the structure is complete, that is, all cohesive ends have a 
complementary arm attached.  The octahedron takes eight four-armed tiles to be a closed and 
complete structure. 
 

 
Remark.  Notice that the tiles use more than 
one cohesive end type.  We do this because 
it restricts the bonding such that there will 
ultimately be fewer ways for waste 
structures to form.  The truncated 
tetrahedron naturally has two different types 
of edges.  Edges of the first type form the 
triangle faces, while edges of the second 
type do not border a triangular face.  So, it 
makes sense to use two separate cohesion 
end types because arms that make up the 
two sorts of edges never intermix.  
Alternatively, one may look at the tiles 

themselves.  The  and  are arms are π/3 

apart, and the third arm of each tile is 2π/3 

radians away from the other two half-edges.  
The truncated tetrahedron is constructed 
such that the arms that are 2π/3 radians 
away from the other two half-edges, that is, 

the  and  arms of any tile, always bond to 

one another.  If the cohesive end types were 

all  and , then undesirable bonds could 

form that would lead to the incidental 
creation of unwanted complexes. 
Six tiles of Type One and six tiles of Type 
Two assemble as shown in Figure 18.  
There are twelve similar bonds composed of 

 and  arms, and these bonds are 

equivalent because they orient their 
members in the same way.  Furthermore,
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Figure 15.  This diagram illustrates the construction part of the proof for the octahedron. 
 

 

there are six similar bonds composed of  

and  arms which are equivalent because 

they orient their member tiles in an identical 
way (see Figure 18).  Arm orientation does 
not present a problem because there are 
only two types of bonds and they use 
different cohesive end types.  Note that it is 
impossible to form larger or smaller 
complete structures from these tiles. 
 

We have shown a construction which 
demonstrates that the absolute minimum we 
began with is acheiveable under our present 
constraints.  We therefore have proven that 
the minimum number of tiles required to 
construct the truncated tetrahedron is two. □ 
 

d. Truncated Octahedron 
 

Theorem 7.  A truncated octahedron may be 
constructed with a minimum of two tile 
types. 
 

Proof.  The truncated octahedron is an 
Archimedean solid composed of twenty-four 
vertices, thirty-six edges, and six squares 
and eight regular hexagon faces.  It requires 
twenty-four tiles with three arms each.  By 
Proposition 1, the truncated octahedron 
requires at least two tile types for its 
construction because the vertices are of 
degree three.  We now present a 

construction that requires precisely two tile 
types.  Both tile types have the configuration 
α1 α4 β3. 
 

Tile Type One consists of one cohesive 

end of type , one of type , and one of 

type  such that the  and  cohesive 

ends are π/2 apart (see Figure 19). 
 

Tile Type Two consists of one cohesive 

end of type , one of type , and one of 

type  and  such that the  and  

cohesive ends are π/2 apart (see Figure 
19). 

 

Remark:  Notice that the tiles utilize more 
than one cohesive end type.  We do this for 
the same reason that we used two cohesive 
end types for the truncated tetrahedron.  
The truncated octahedron also has two 
different sorts of edges.  Edges of the first 
sort form the square faces, while edges of 
the second sort do not border a square face. 
So, it makes sense to use two separate 
cohesive types because arms that make up 
the two sorts of edges never intermix.  Using 
two cohesive end types decreases the 
chance that undesirable bonds will form. 
Twelve tiles of Type One and twelve  tiles of 
Type Two assemble as shown in Figure 19.  
There are twenty-four similar bonds   

 

Arms    Possible Complementary 
Bond Arms 

Tile Configuration: α1 α4 β1 β2 
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Figure 16.  The tile used in the construction 
of the cuboctahedron.  The configuration: α1 
α2 β1 β2 . 
 
 

composed of  and  arms, and these 

bonds are equivalent because they orient 
their members in the same way.  
Furthermore, there are twelve similar bonds 

composed of  and  arms which are 

equivalent because they orient their member 
tiles in an identical way (see Figure 19).    
Notice that it is impossible to form larger or 
smaller structures from these tiles. 
We have shown a construction which 
demonstrates that the absolute minimum we 
began with is achieveable under our present 
constraints.  We therefore have proven that 
the minimum number of tiles required to 
construct the truncated octahedron is two.  □ 
 

V. CONCLUSIONS 
 

This paper is a continuation of past 
work [2,6,8,12, and 21] aimed at optimizing 

the creation of DNA nanostructures, but it 
also represents a new beginning.  We have 
begun to consider the problem of optimizing 
structures that must obey a new set of 
constraints that more accurately reflect the 
present state of research in the field of DNA 
nanotechnology.  It may be that in the future 
we will be able to specify something about 
the structure or size of all the possible 
nanostructures that can be built from a 
certain number of tiles.  We wish to develop 
a working proof for the absolute minimum 
number of tiles required for cycles of all 
sizes in the octet truss.   

It is true that there is still some flex 
to any arm that can presently be made, so 
that the assumption that arms are rigid is not 
absolutely sound.  This is probably more of 
a problem for very large structures than it is 
for small structures, such as those we 
consider above.  The flex of a structure is 
also related to the characteristics of the 
structure.  These factors will constitute a 
good base for further study and new findings 
in DNA nanostructures in the octet truss.   

The problem formulation is a 
significant part of our research, as it is with 
any mathematical project.  It gives future 
researchers a  comprehensible  way  to look 

 

 
                Tile Configuration: α1 α2 β1 β2 
 

 
 

Figure 17.  This diagram  illustrates the construction part of the proof for the cuboctahedron. 

   Arms        Possible Complementary 
  Bond Arms    
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Figure 18.  This diagram illustrates the construction part of the proof for the truncated 
tetrahedron. 
 

 
 
 
 

 
 
 
 

 
 
 
 
Figure 19.  An illustration of the construction part of the truncated octahedron proof. 
 
 
 

at the work we have done, and possibly 
continue it.  As with our topic, DNA 
nanostructures, there are many definitions, 
theorems, and much background 
information in order to fully grasp the 
concepts of our work.  We ultimately want to 
present our mathematical work in a manner 
that the researcher, who uses our findings, 
can understand.  There are many possible 
paths to take with the information we have 
discovered.  We can look at the tiles 
possible with more than four arms, and see 
what complexes can be made from these.  It 
could be combined with computer 
simulations to implement a program check 
on our theories.  This would make it more 
user-friendly for a person to experiment with 
the research we have completed.  All of 
these possibilities, and more, need a 
foundation, which is the problem formulation 
and background information provided in this 
paper. 
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