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ABSTRACT 
 

In this paper we look at the properties of modules and prime ideals in finite dimensional 
noetherian rings.  This paper is divided into four sections.  The first section deals with noetherian 
one-dimensional rings.  Section Two deals with what we define a “zero minimum rings” and 
explores necessary and sufficient conditions for the property to hold.  In Section Three, we come 
to the minimal prime ideals of a noetherian ring.  In particular, we express noetherian rings with 
certain properties as finite direct products of noetherian rings with a unique minimal prime ideal, 
as an analogue to the expression of an artinian ring as a finite direct product of artinian local 
rings.  Besides, we also consider the set of ideals I in R such that M ≠ I M for a given module M 
and show that a maximal element among these is prime.  In Section Four, we deal with 
dimensions of prime ideals, Krull’s Small Dimension Theorem and generalize it (and its converse) 
to the case of a finite set of prime ideals.  Towards the end of the paper, we also consider the 
sets of linear dependencies that might hold between the generators of an ideal and consider the 
ideals generated by the coefficients in such linear relations. 
 
I. ALL RINGS ARE ASSUMED TO 

COMMUTATIVE RINGS WITH 
IDENTITY 

 
Our main purpose is to study the 

noetherian rings of finite dimension and their 
modules.  In this respect we shall prove 
results on the decomposition of a noetherian 
ring as a direct product of simpler noetherian 
rings and also consider if and only if 
conditions on the finitely generated modules 
of the ring that determine the dimension of 
the ring.   We will also take up separately 
the question of dimension of a prime ideal in 
relation to the number of its generators and 
also establish a converse to these results [1-
4]. 

Although artinian rings are defined 
apparently in a dual fashion (descending 
chain condition) to noetherian rings 
(ascending chain condition), it turns out that 
the artinian rings are just the noetherian 
zero dimensional rings (see [5]).  Therefore, 

we shall skip the case of dimension zero 
and start Section 1 with noetherian one-
dimensional rings. 

 
II. SECTION 1 
 

We start with 1-dimensional 
noetherian rings.  Suppose that M is a 
finitely generated R-module.  We will 
consider the support of M, i.e., the maximal 
ideals m such that Mm = 0.  Our first 
proposition will deal with the case of 
noetherian one-dimensional rings.  Then we 
have the following result. 
 
Proposition: Let R be a domain.  The 
following statements are equivalent: 
 

1) R is noetherian and 1-dimensional. 

2) If M is a finitely generated R-
module, M is either of finite length of 
Supp(M)=Spec(R).  (The Support 
Supp(M) of a module is the set of all 
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prime ideals p of R such that Mp ≠ 0.  
The Spec of a ring refers to a set of 
all prime ideals of the ring.) 

Proof: Let R be noetherian and 1-
dimensional.  Let M be a finitely generated 
R-module.  We take a filtration of M such 
that the quotients of consecutive 
submodules in it are isomorphic to some 
R/p.  If all of them are of the form R/m for 
some maximal ideal m, M comes out to be 
of finite length.  If any of them is not 
maximal, it must be zero (since the ring is 1-
dimensional).  As such, one of the quotients 
is isomorphic to R.  This quotient cannot 
become 0 under any localization whatsoever 
and hence Supp(M) = Spec(R). 
 Conversely, let us assume (2).  
Take a non-zero ideal I in R.  Then R/I is 
finitely generated.   However, if we localize 
with respect to the prime ideal 0(R a 
domain), we have generated (R/I)0 = 0.  
Thus, Supp(R/I) is not the same as Spec(R).  
Thus R/I is of finite length and hence 
noetherian.  Now suppose that there is an 
infinite increasing chain of ideals in R: say I0 
⊂ I1 ⊂ I2 ⊂…  Then if we take a non-zero 
ideal from this chain, say I1, we see that R/ I1 
is non-noetherian.  This is a contradiction.  
Hence, R is noetherian.  Now, we take a 
non-zero prime ideal p in R.  Consider R/p 
which is of finite length as an R/p module.  
Thus R/p is an artinian ring.  Hence 0, which 
is a prime ideal in R/p, is maximal.  Thus, p 
is a maximal ideal.  Hence R is 1-
dimensional. 
 We now consider another equivalent 
condition for 1-dimensional noetherian 
domains.  Accordingly, we have the 
following result. 
 
Proposition: Let R be a domain.  Then the 
following conditions are equivalent: 

1) R is noetherian and one-
dimensional. 

2) Every finitely generated R-module of 
non-zero annihilator is of finite 
length. 

Proof: Let M be an R-module of non-zero 
annihilator I.  Then M may be considered as 
an R/I module.  Since R/I is a 0-dimensional 
noetherian ring, M is of finite length. 
 Conversely, we consider the case M 
= R/J, where J is a non-zero ideal, as an R-
module.  We see that it has non-zero 
annihilator, i.e. J, and hence must be of 
finite length.  Thus R/J is artinian, i.e. 

noetherian and 0-dimensional.  Hence, R is 
noetherian.  Also, since R is a domain, (0) is 
a prime ideal.  Thus R is 1-dimensional. 
 
III. SECTION 2: ZERO MINIMUM 

RINGS 
 

Let R be a noetherian ring.  Then 
there might exist infinite descending chains 
of ideals in R.  As an intermediate between 
noetherian and artinian rings, we will allow 
the descending chain condition to creep into 
the noetherian ring in a restricted manner.  
Consider all the ideals which may be written 
as the intersection of such an infinite 
descending chain.  If R is non-artinian, this 
is a non-empty set.  Let J be a maximal 
element of this set.  Then R/J has a curious 
property.  Any infinite descending chain of 
ideals in this ring has zero intersection.  We 
now define: 
 
Definition: Zero minimum Ring.  A ring R is 
said to be a zero minimum ring if the 
intersection of an infinite decreasing chain of 
ideals in R is zero.  (Note that R is not 
assumed to be noetherian.) 
 
 The following proposition is an 
analogue of the standard theorem which 
says that R is artinian. R is noetherian and 0 
dimensional.  However, here we have the 
condition that R is a domain.  To see similar 
blends of chain conditions, the reader may 
consult [6]. 
 
Proposition: Let R be a domain.  Then the 
following are equivalent: 

1) R is noetherian and 1-dimensional. 
2) R is a Zero-minimum Ring. 

Proof: Suppose that R is noetherian and 1-
dimensional.  Take an infinite descending 
chain of ideals in R and consider their 
intersection, say J.  If J is not 0, R/J is a 
noetherian ring having all its prime ideals 
maximal (the minimal prime ideal 0 has 
been eliminated by taking R/J).  Hence R/J 
is an artinian ring and we have a decreasing 
infinite chain in R/J.  This is clearly a 
contradiction. 
 Conversely, we now assume that R 
is a zero minimum ring.  Then each R/J is 
artinian, for non-zero J.  Thus, each R/J is 
noetherian for non-zero J, and by the same 
argument as in the previous result, this gives 
us that R is noetherian.  Also, this tells us 
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that all non-zero prime ideals in R are 
maximal.  Since R is a domain, we have one 
more prime ideal, namely 0, which makes 
the ring 1-dimensional. 
 
 The idea of studying noetherian 1-
dimensional rings by studying their artinian 
quotient rings may also be traced back to 
[7].  In this respect, the reader may also 
consider the more recent [8].  The previous 
proof also says that if R is not a domain and 
at the same time is a zero minimum ring, we 
would have had: R is a noetherian ring and 
all non-zero prime ideals are maximal.  
Since 0 is not a prime ideal in R, we have: 
 
Proposition: If R is not a domain, R is a zero 
minimum ring implies that it is artinian (and 
thus there is no infinite decreasing chain at 
all). 
Proof: We see that R is a noetherian ring 
with all prime ideals maximal.  Hence, R is 
artinian. 
 We will use this to prove the next 
result, 
 
Proposition: Let R be a noetherian ring (and 
non-artinian) and let J be maximal among 
the ideals that can be written as the 
intersection of infinitely long, decreasing 
chains of ideals in R.  Then J is prime. 
Proof: Consider R/J.  Note that R/J is 
noetherian but not artinian (there exists an 
infinite chain intersecting to 0).  But R/J is a 
zero intersection ring.  From the previous 
result, if R/J is not a domain, it must be 
artinian.  Hence R/J is a domain.  Thus, J is 
a prime ideal. 
 
 We end this section with the 
following theorem. 
 
Proposition: If R is a zero minimum ring with 
non-zero Jacobson radical (the Jacobson 
radical is the intersection of all the maximal 
ideals of R), R must have finitely many 
maximal ideals. 
Proof: Suppose that R has infinitely many 
maximal ideals.  Choose countably many of 
these maximal ideals, say m1, m2… 
Consider the following chain of ideals: 
 m1 ⊃ m1 ∩ m2 ⊃ m1 ∩ m2 ∩ m3…  
The inclusions are strict because: if there is 
equality at the kth stage, mk ⊃ m1 ∩ m2 ∩…∩ 
mk-1.  This will imply that mk contains some 
other maximal ideal, which is absurd.  Thus, 

there is an infinite chain.  Since R is a zero-
minimum ring, the intersection of this chain 
is (0).  But, the intersection contains the 
Jacobson radical J.  Thus, J = 0. 
 
IV. SECTION 3: MINIMAL PRIME 

IDEALS 
 

We shall now try to see the 
properties of the minimal prime ideals of a 
noetherian ring.  It is well known that a 
noetherian ring has finitely many prime 
ideals, (see [5).  We shall use this property 
heavily in subsequent discussion.  Further 
we note the following: if R is a noetherian 
ring and I and ideal in R, the ring R/I is also 
noetherian.   Thus, it will also have finitely 
many prime ideals, i.e. there are only finitely 
many prime ideals minimal over a given 
prime ideal I.  We shall take the liberty of 
referring to the prime ideals minimal over a 
given ideal I as the minimal primes of I 
rather than the minimal primes of R/I. 

A remarkable fact about the artin 
ring is that it can be written as a finite direct 
product of artin local rings (see [5]).  This is 
proved as follows (and the proof proceeds 
along the lines of the Chinese Remainder 
Theorem):  The artin ring R has only finitely 
many maximal ideals, say m1,…, mn and the 
Jacobson radical J is nilpotent, say Jk = 0.  
Consider the product Πmi

k.  Since the mi are 
mutually co-prime, this product equals ∩mi

k. 
But Πmi

k ⊆ (∩mi)k = (0).  Hence we have the 
natural isomorphism from R = R/∩mi

k to the 
direct product of the artinian local rings 
R/mi

k.  We note that in a 0-dimensional ring 
we might actually think the of the maximal 
ideal as a minimal ideal.  We would like to 
see some version of this property for higher 
dimensional rings as well.  However, for this 
we see in the following proposition that we 
must make the assumption that the minimal 
prime ideals of the ring are actually co-
prime.  (The property of being mutually co-
prime is obvious for the maximal ideals, but 
it has to be assumed when we are dealing 
with minimal prime ideals.) 
 
Proposition: Let R be a finite dimensional 
noetherian ring such that the minimal prime 
ideals in R are actually co-prime.  Then, if R 
is k-dimensional, R can be written as a finite 
direct product of noetherian k-dimensional 
rings, each having only one minimal prime 
ideal. 
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Proof: In the above proof we replace the 
Jacobson radical by the nilradical, which is 
obviously nilpotent.  A ring of the form R/pn, 
where p is a minimal prime ideal, has only 
one minimal prime ideal (if q is a prime ideal 
containing pn, p = rad(pn) ⊆ rad(q) = q).  
 We know from Nakayama’s Lemma 
that if M is a finitely generated module and I 
is an ideal contained in the Jacobson radical 
J and M = JM, we have M = 0.  We now 
consider all the ideals I in R which have the 
property that M ≠ IM.  If we assume that M ≠ 
0, we know that J is in this set.  Let us 
consider any maximal element among those 
ideals; we will show that it is a prime ideal. 
 
Proposition: Let R be a noetherian ring and 
M be a finitely generated non-zero R-
module.  Consider the set of all ideals I in R 
such that M ≠ IM.  This set is obviously non-
empty since M ≠ 0.  Consider an ideal J 
maximal with respect to this property.  Then 
J is prime. 
Proof: Consider the module N = M/JM.  This 
may be treated as an R/J module.  Now 
suppose that J is not prime.  Consider any 
prime ideal p containing J; then p contains J 
strictly.  But this means that M = pM.  
However, M = pM implies that Mp = 0, 
applying Nakayama’s lemma to Mp over Rp.  
Thus (M/JM)p = 0 for each prime ideal in r/p.  
But then M/JM = 0 or M = JM.  This is a 
contradiction.  
 
V. SECTION 4: Krull’s Theorem (Small 

Dimension Theorem) and 
Generalizations 

 
We now have come to the 

legendary Small Dimension Theorem of 
Krull.  It gives us an upper bound for the 
height of a prime ideal in a noetherian ring 
based on the number of its generators.  We 
state the theorem as follows: 
 
Small dimension Theorem.  Let I be an ideal 
in a noetherian ring R and let p be a prime 
ideal in R minimal over I.  Then if µ(I) 
denotes the number of generators for I, µ(I) 
≥ ht(p). 
 

We refer the reader to [6] for a proof 
of the above theorem.   We note that the a-
bove theorem tells us that the height of any 
prime ideal p in a noetherian ring is finite 

(we apply the theorem with I = p).  Further, 
this means that if the ring has only finitely 
many maximal ideals, then the supremum of 
the heights of the maximal ideals is also 
finite.  This supremum is referred to as the 
dimension (or Krull dimension) of the ring.  
The theorem therefore shows that the krull 
dimension of a semi-local noetherian ring is 
finite. 
 We consider next the extension of 
the small dimension theorem (and its 
converse) to finite sets of prime ideals.  Let 
p1,…,pn be a set of prime ideals with no 
order relations among them.  This means 
that none of the prime ideals pi is contained 
in any of the primes pj, i ≠ j.  Let their heights 
be r1,…, rn respectively; and let r = 
max(r1,…, rn).  If I is an ideal generated by k 
elements such that each p1,…, pn is minimal 
over I, the k ≥ r.  This is obvious.  Now we 
consider the converse.  The converse of the 
small dimension theorem is as follows:  
Given a prime ideal of height r, there exists 
an ideal I, generated by r elements, such 
that p is minimal over I.  Again we refer the 
reader to [6] for a proof of the theorem.  
Accordingly, we replace p by a finite set of 
prime ideals with no order relations among 
them.  Now we claim that there should exist 
an ideal I generated by r elements such that 
each pi is minimal over it.  Here r is the 
maximum of the heights of the prime ideals 
pi. 
 
Proposition: Let p1,…, pn be a set of prime 
ideals in a noetherian ring with no order 
relations among them, i.e. none of the prime 
ideals pi is contained in pj for any i ≠ j.  Let 
ht(pi) = ri and let r = max(r1,…, rn).  Then 
there exists an ideal I generated by r 
elements such that each prime of the prime 
ideals pi is minimal over I, i.e. the image of pi 
is a minimal prime ideal of R/I. 
Proof: We shall apply induction on r.  If r = 0, 
each of the prime ideals pi is a minimal 
prime ideal and hence we can take I = (0), 
which is generated by 0 elements.  Now, we 
assume the result to be true for r – 1. 
 Let q1,…, qs, qs+1,…, qt be the 
minimal prime ideals of R (R being 
noetherian, this set is finite).  Some of the 
pi’s may be minimal prime ideals of R, let us 
assume that q1,…, qs are the minimal prime 
ideals among them.  It is possible that s = 0.  
Take any pi.  Then pi cannot be a subset of 
∪t

i=s+1qi  (by prime avoidance).     Take ai ∈ 
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pi - ∪t
i=s+1qi.  Let a = a1a2…an.  Consider the 

ring R/(a).  Each of the prime ideals pi 
contains a.  But, neither of the prime ideals 
qs+1,…, qt contains a since they do not 
contain any of a1,…, an. 
 Consider those pi for which ht(pi) = 
r.  Each pi contains a minimal prime ideal 
and these minimal prime ideals cannot occur 
among the q1,…,qs because the pi’s have no 
order relations among them.  The minimal 
prime ideals contained among the pi’s of 
height r all come from the ideals qs+1,…,qt.    
Since neither of the prime ideals qs+1,…,qt 
contain a, in the ring R/(a), these prime 
ideals are excluded.  Hence, the height of 
those primes pi such that ht(pi) (in R) gets 
reduced by at least one.  Hence, the height 
of each pi in R/(a) is ≤ r -1.  Assume that 
max(ht(p1),…,ht(pn)) is k < r (in the ring 
R/(a)).  By induction, we will have an ideal I 
in R/(a), generated by k elements such that 
each pi is minimal over it.  Thus, in the ring 
R, each pi will be minimal over the ideal 
generated by I and a.  This ideal has k+1 
generators.   Since ht(pi) = r for at least one 
pi, r ≤ k+1 and we know that k < r.   Thus k = 
r+1 and the ideal we have is generated by 
exactly r elements. 
 
 Take a prime ideal of height r in a 
noetherian ring.  Then there exists an ideal I 
generated by r elements such that p is 
minimal over I.  Let I = (a1,…,ar).  We want 
to know more about the generators ai.  More 
precisely, we want to know what relations 
they satisfy.  If I is not free on a1,…,ar, there 
exist (non trivial) linear combinations of the 
ai’s which are 0.  Let I1 be the ideal 
generated by the coefficients of a1 in all 
such combinations.  More precisely, 
consider all linear combinations ∑xiai of the 
ai’s that are 0.  Consider all the x1’s 
appearing in these, that is the coefficients of 
a1.  Let us designate the ideal generated by 
these x1’s as I1.  Similarly, consider the x2’s 
appearing in these combinations, that is, the 
coefficients of a2.  Let us designate the ideal 
generated by these x2’s as I2.  Similarly, we 
define I3,…,Ir.  We note that: 
 
Proposition: The sum of ideals I1 + I2 +…+ Ir 
is contained inside p. 
Proof: We note that the height of p in R is 
the same as its height in Rp.  Also, pe will 
remain a minimal prime ideal over Ie in Rp.  
Thus Ie should have at least r generators.  If 

I1 is not contained in p, I1
e contains 1 and 

hence, in Rp, we can write a1/1 as a linear 
combination of a2/1,…,an/1.  Hence I1 ⊆ p 
and so also for I2,…,Ir.  Thus I1 + I2 +…+ Ir is 
contained in p. 
 
Corollary: If ai is a generator for the ideal I, 
Ann(ai) ⊆ p. 
 

Having considered the prime ideals 
minimal over a given ideal I, we come to the 
problem of determining the number of prime 
ideals minimal over a given ideal I.  This is 
the same as determining the number of 
prime ideals minimal over a given radical 
ideal (for p contains I iff p contains the 
radical of I). 
 
Proposition: Consider the products of prime 
ideals contained inside I, i.e. products of the 
form p1p2…pt contained in I, where pi need 
not be all distinct, although each pi contains 
I.  Consider such a product having minimal 
number of distinct terms, say k terms.  Then 
there are at most k many prime ideals 
minimal over I. 
Proof: Suppose that p1p2…pn is the chosen 
product and it has k distinct terms.  Consider 
a prime ideal p containing I.  If each of the 
pi’s has an element not contained in p, say 
xi, we see that the product x1x2…xn, though 
contained in I, is not contained in p.  Thus p 
⊇ pi for some i.  If p is chosen to be minimal 
over I, we see that it must equal pi.  Thus I 
has at most k prime ideals minimal over it. 
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