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ABSTRACT 

The question as to whether the shape of a drum can be heard has existed for around fifty years. 
The simple answer is ‘no’ as shown through the construction of isospectral domains. Isospectral 
domains are non-isometric domains that display the same spectra of frequencies of sound. These 
frequencies, deduced from the eigenvalues of the Laplacian, are determined by solving the wave 
equation in a domain  , where    is subject to Dirichlet boundary conditions. This paper presents 
methods to expand the already existing two dimensional transplantation proof into Euclidean 3-
space and, through these means, provides a number of three dimensional isospectral domains. 

 
I. INTRODUCTION 

 
In 1966, Mark Kac proposed the question, 
“Can one hear the shape of a drum?” [see 6] 
This question refers to the eigenvalues of a 
vibrating membrane. These eigenvalues 
arise from the solution of a wave equation 
on a region   bounded with Dirichlet 
boundary conditions. In other words, 
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   is determined from the density and 
tension of the membrane. A procedure for 
solving this second order partial differential 
equation for  , assuming Cartesian 
symmetry, is the separation of variables 
wherein  (     )   (   ) ( ). By utilizing 
this substitution, we obtain a second order 
ordinary differential equation and a 
Helmholtz equation: 
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By applying the substitution  (   )  
 ( ) ( ), we obtain two more second order 
ordinary differential equations: 
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where      . Solutions of these three 
differential equations yield 
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The eigenvalues of this wave 

equation are      and    which depend on 
the region  . If   were to be a rectangular 

region of side lengths   and  , the 

eigenvalues would be   (
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and      , where      . Also, due to 
the boundary conditions,   and   go to zero. 

By using the fact that  (     )  
 ( ) ( ) ( ) and the concept of linear 
superposition, the final solution of the wave 
equation is as follows: 
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Figure 1.  These two domains will produce identical spectra of frequencies when played. They 
can be simplified into two heptaboloes of similar orientations. 
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The coefficients        and       are 
determined by the initial conditions of the 
deformation of the membrane.  

In relation to this information, Kac 
wondered if two non-isometric domains, 
   and   , could produce the same spectra 
of frequencies, that is, have the same 
eigenvalues. The question remained 
unanswered until 1992 when Gordon et al. 
[see 5] presented two domains that had 
different shapes but produced identical 
spectra [figure 1]. 
 Here we provide methods for the 
creation of isospectral domains in Euclidean 
3-space by extending the 2-space 
transplantation methods to incorporate the 
added dimension. In section 2, we shall 
extend Dirichlet boundary conditions and 
folding rules to 3-space. In section 3, we 
shall present three dimensional isospectral 
domains with explanations of transplantation 
methods. Finally, further areas in which to 
extend research and applications will be 
presented. 
 
II. PRELIMINARIES 
 

In order to understand the 
transplantation proofs of isospectrality in 3-

space, one must first understand how to 
extend Dirichlet boundary conditions to 
higher dimensions along with the extensions 
of basic folding rules.  
 
a. Boundary conditions 
 

A wave equation,  , on a given two 
dimensional region,  , with Dirichlet 

boundary conditions,       , describes 
the movement of a drum: e.g. a two 
dimensional membrane bounded on a one 
dimensional boundary where   yields a 
three dimensional coordinate. By extension, 
if     , then         and       . In 

the case of     , the wave equation will 
yield a four dimensional coordinate while the 
Dirichlet conditions require the  domain to be 
clamped by a two dimensional boundary. A 
wave equation of a domain of this form will, 
in fact, describe a three dimensional drum 
vibrating into the fourth dimension. This 
allows construction of the regions in our 
space; however, visualization of the 
vibrations is impossible given our restricted 
directions of movement.  
 When solving this new wave 
equation,   must take the form of  (       ) 
due to the extra parameter. A sample 
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Figure 2.  A light source in n-space casts a shadow of an n-cube into (n-1)-space. Note that the 
closer a line/face/volume is to the light source, the larger it appears in the projection and vice 
versa. This fact allows a view of higher dimensional folding via projective geometry. The colors of 
the vertices are to show the connections between the figure and its projective image. 
 
 
solution to a wave equation in three 
dimensions with Dirichlet boundary 
conditions would be that of a vibrating 
rectangular prism of side lengths      and   

respectively. Similar to the earlier problem of 
the vibrating rectangular membrane, the 
solution of this wave equation would be as 
follows: 
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where        , and, as in the earlier 
problem,      and      are determined 

through the initial conditions of deformation. 
 
b. Folding rules 
 

The best way in which to visualize 
folding in higher dimensions is through what 
is known as projective geometry. Projective 
geometry is a method that can be used to 
embed an  -dimensional object into (   )-
space. This method works by considering a 
hypothetical light source in  -space casting 

a shadow of an object onto (   )-space. 
The simplest case is that of     because 

of our experiences, but     becomes more 
challenging. In order to visualize this case, 
one must consider a light source in  -space 
acting upon an object to cast a three 
dimensional ‘shadow.’ As an example, 
consider the case of a three dimensional 
cube and a four dimensional hypercube 
being projected onto the next lower 
dimension.  

Consider a region,     , divided 
into two smaller isometric regions,
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Figure 3a. The blue box denotes    while green denotes   . The line connecting the two regions 

is    . In the third step,     ecomes    . The final step shows     o erlapping   . 
 

 

 

Figure 3b. This is simply an extension of figure 3a into the next higher dimension where 
   and    are volumes instead of areas and     is a face. 
 
 
       . These two smaller domains 
are connected by their common boundary 
           . In order to fold    onto    

across    , one must cross through     . 
To best visualize this, take a piece of paper 
and cut out a region,  . Divide this region in 
half with a line,    , such that the two 

halves,    and   , are reflections of each 

other about    . Label these two halves as 
such and the back side of them as 
    and     respectively. Now fold    onto 

   across    . Notice that the paper must 
cross into the third dimension in order to 
complete the fold and that, not only is    
reflected onto   , it is reversed as well so 

that     overlaps   .  
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Figure 4.  Four different views are shown of     and    from different angles. The colors are for 
the eye and carry no other significance. 
 
 
 

Now take this same case by using 
projective geometry to visualize the fold. 
Instead of seeing the actual piece of paper 
fold through the third dimension, one would 
see the shadow of the fold. In the process of 
folding, one would see    become deformed 
as it nears the light source and eventually 
flip across     to become     [figure 3a]. In 
other words, when folding, a side crosses 
over the common boundary and concludes 
upside-down. The same basic concept is 
true when folding a three dimensional figure. 
However, instead of     being a line, it is a 
face, and, in contrast with concluding 
upside-down, it terminates in an inside-out 
position [figure 3b]. Being able to visualize 
higher dimensional folding rules is key to an 
understanding of a transplantation proof in 
3-space. 

 
III. ISOSPECTRAL DOMAINS IN 

EUCLIDEAN 3-SPACE 
 
A number of isospectral regions have been 
presented in Euclidean and hyperbolic 2-
spaces. These have utilized what is known 
as a transplantation proof of isospectrality, 
which can be done through folding and 
translating. We now present a pair of our 
three dimensional isospectral domains 
[figure 4] and describe the transplantation of 
the eigenfunctions betwixt these regions. 
 

a.  Transplantation of the eigenfunctions in 
3-space 

 
When dealing with a wave equation 

of the form in this paper, the concepts of 
linear superposition can be highly beneficial. 
This concept simply states that particular 
solutions of a linear differential equation can 
be summed to obtain the general solution. In 
the case of the regions here, consider the 
domain,  , to be divided up into   
subregions,   , such that 

 

  ⋃  

 

   

 

 

If this is the case, we can assign a particular 
solution to a given subregion, so that    is 

defined in   . Therefore the full solution is 
given by 

  ∑  

 

   

 

 
In order to simplify notation, we shall denote 
   as  ,    as  , and so on. In the case of 
the regions presented in figure 4, it is 
convenient to divide    into seven 
tetrahedral subdomains, such that 
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Figure 5.  Methodology for transplanting    onto   . Once again, note that the colors are simply 
to aid in the visualization of the domains and have no other significance. 
 
 
 By utilizing the assertions presented 
in section 2.2, we can now form a map to 
transplant the eigenfunctions of    to those 
of   . By combining section 2.2 with the 
concepts of linear superposition, we can 
infer that if   is folded onto  , the particular 
solution on the folded region would be 
(   ). If this, in turn, were to be folded 

onto  , the superposed eigenfunction would 

be (     ). Figure 5 presents the folding 

methods to accomplish mapping    onto   . 
 The folding process for showing 
   and    to be isospectral, in the case of 
our given domains, consists of four basic 
steps although there may be greater 
numbers for more complicated regions 
[figure 5].  
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Figure 6.  The subregion  , from   , and the subregions      and  , from   , are shown. The 
colorations of the faces denote the similar boundaries between the subregions due to the 
principle of reflection, and the wireframes show the connectivity in the full domain. 
 
 
Step 1:  Starting with   , fold   onto  , then 

fold both (   ) onto  , thereby 
creating the superpositions of 
(     ) and (   ). 

Step 2:  Starting with   , turn it ‘inside out,’ 

thereby obtaining    . Fold –   onto 

–  , then fold –   onto – . This 
creates the superpositions of 
(   ) and (   ). 

Step 3:  Again, start with     and fold –   

onto – , thereby creating the 

superpositions of (    ) and 

(     ). 
Step 4:  By combining the figures created in 

steps 1, 2, and 3 in such a way that 
each tetrahedral subregion 
becomes a superposition of three 
eigenfunctions from   ,    is 
obtained. 

 
 Once this map has been created, 
three conditions must be satisfied. The map 
must be nonsingular, the Dirichlet boundary 
conditions must be upheld, and the 
eigenfunctions must have a continuous 
derivative within the region. The first 
condition is easily satisfied by showing that 

the map can be inversed so that it maps 
   onto   . This is proven in a 
straightforward manner by either using the 
same methods in reverse or by creating a 
transplantation matrix,  , to encode the 

folding rules and show that det     .  
 The second and third conditions are 
more challenging to verify due to the 
difficulty in visualizing    and     in three 
dimensions. Condition two states that the 
function must vanish on   . Although the 
eigenfunctions and eigenvalues cannot be 
analytically computed, they can be equated 
between domains. As shown in figure 5, 
every eigenfunction in a given tetrahedral 
subdomain of    is a superposition of three 

eigenfunctions from   . The process of 
assuring that        consists of simply 
checking that the eigenfunction 
superpositions go to zero at every boundary. 
With domains in 3-space, this can become 
challenging due to the difficulty in 
visualization. As an example, we take a test 
subregion from    such as the tetrahedron 

containing (     ), which shall be 
denoted as   for simplicity. In order to test 
the boundary conditions, we must refer back  
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Figure 7a.  These two isospectral domains were created from the base of a hexahedron. The 
thick black lines visible on some of the boundaries of the subregions are to show detachment, i.e. 
the two subregions on either side are disjoint. The colors have no other significance beyond 
aiding in visualization. 
 
 

 

 

Figure 7b.  This pair of isospectral domains was created from an octahedral base. Once again, 
the colorations are simply for the eye. 

 
 
to    and equate the eigenfunctions [figure 
6].  
 First we look at the blue edge of   

and compare it to that of      and  . Upon 

investigation, we see that          
because it is an exterior boundary, and that, 
due to their sharing of the common face, 
             ; thus         (    
 )             , where   is an 
arbitrary function. Now turning attention to 
the red edge, we find that         and 

           . This being the case,       
 . Evaluation on the green edge yields 
                         , thereby 

making          . By carrying out this 

process for every face on    , the Dirichlet 
boundary conditions will be proven upheld. 
Condition three is proven in a similar 
manner by assuring that    continuous 
derivative across all    . By again taking the 

subregion of  , we look at the yellow interior 
face. In order to assure the continuous 
derivative, we must also consider the 
subregion connected by the yellow face, 
(      ), denoted as  . By looking at 

  , we see that                  ; 

                 ; and           . By this 
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account,                  . Through this 

method of equating, we have shown that the 
derivative is continuous across this interior 
face. Once again, by continuing this process 
for all    ,    is shown to have a continuous 

derivative throughout   . 
 
b. Other isospectral domains in 3-space 
 

Through the means presented in 
section 3.1, we present a number of other 
isospectral domains in Euclidean 3-space. 
To create a pair of three dimensional 
isospectral domains can be done simply by 
adding a unit of depth to a preexisting two 
dimensional pair. This simple extension, 
however, does not create interesting results. 
The domains presented here are created by 
using the platonic solids as a base 
subregion [figure 7a & 7b]. Only two 
domains are presented in the paper in order 
to portray the concept. Additional similar 
regions can be obtained by taking simple 
mutations of the base subregion.  

 
IV. Concluding remarks 
 

Applications of these results mainly 
lie in that of particle and quantum physics. 
By altering the Dirichlet boundary conditions 
to suit the Schrödinger equation, isospectral 
potential energy systems of particles may be 
able to be produced and studied.  
 Further research includes the 
extension of transplantation into higher 
dimensions. In the near future, we shall be 
working on this question in 4-space by using 
these same basic methods. One of the 
largest questions still remaining in this field 
is whether or not there exist pairs of convex 
isospectral domains in given spaces. 
Convex isospectral domains have been 

shown to exist in    and   , for     [see 
3&4], but none have been proven, nor 

disproven, to exist in    or   . 
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