
AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL. 10, NO.4 (2012)

1

A New Vectorization Technique for Expression
Templates in C++

J. Progsch and Y. Ineichen
Department of Computational Science

ETH-Zürich
CAB H 83.2

Universitätstrasse 6
8092 Zürich SWITZERLAND

 A. Adelmann

Paul Scherrer Institute
5232 Villigen PSI
SWITZERLAND

Received: September 16, 2011 Accepted: October 24, 2011

ABSTRACT

Vector operations play an important role in high performance computing and are typically
provided by highly optimized libraries that implement the Basic Linear Algebra Subprograms
(BLAS) interface. In C++ templates and operator overloading allow the implementation of these
vector operations as expression templates which construct custom loops at compile time and
providing a more abstract interface. Unfortunately existing expression template libraries lack the
performance of fast BLAS implementations. This paper presents a new approach - Statically
Accelerated Loop Templates (SALT) - to close this performance gap by combining expression
templates with an aggressive loop unrolling technique. Benchmarks were conducted using the
Intel C++ compiler and GNU Compiler Collection to assess the performance of our library relative
to Intel's Math Kernel Library as well as the Eigen template library. The results show that the
approach is able to provide optimization comparable to the fastest available BLAS
implementations, while retaining the convenience and flexibility of a template library.

I. INTRODUCTION

Vector and matrix operations are
important building blocks of numerical
computations like solving a system of linear
equations or integrating differential
equations. Providing optimized imple-
mentations of these operations is therefore
of great interest. Naive implementations are
usually oblivious to hardware features and
limitations that affect the performance and
are subject to compiler optimization which
may vary greatly across different compilers
and optimization settings. The Basic Linear
Algebra Subprograms (BLAS) interface with
roots in the FORTRAN programming
language has become the quasi standard for
libraries that provide such optimized linear
algebra routines. Examples for such libraries
are the Automatically Tuned Linear Algebra

Software (ATLAS), GOTO BLAS or Intel's
Math Kernel Libraries (MKL) [1]. In the last
decade FORTRAN has been overtaken by
C/C++ as the primary language for scientific
software and accordingly C/C++ bindings for
BLAS libraries are being used to benefit
from the optimized implementations.
Unfortunately this approach falls short when
language inherent features of C++ like
operator overloading or templates are being
used. More modern approaches are present
in expression template libraries such as
Blitz++ [2], Eigen [3] and the Portable
Expression Template Engine (PETE) [4].

One added benefit of the expression
template approach is the compile time
construction of optimized loops. These
allow, e.g., a reduction of memory accesses
of operations that have to be expressed as
multiple calls to BLAS routines but could be

AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL. 10, NO.4 (2012)

2

Figure 1. Expression tree for d = a + (b – c).

written as a single loop, which is exactly
what the expression template library does
(loop fusion). Generic expression template
implementations still rely on the compiler to
apply additional optimization like the use of
Single Instruction Multiple Data (SIMD)
instructions (vectorization) or loop unrolling.
Explicit vectorization for expression
templates can be achieved with intrinsics
which allow the emission of specific CPU
instructions without the use of inline
assembler. Apart from using the right
instructions, the key to close to optimal
performance is aggressive loop unrolling
and instruction ordering that minimizes
pipeline stalling. Loop unrolling can be
achieved by template meta programming
which tends to produce suboptimal register
usage while the loop unrolling capabilities of
the compilers are inconsistent and still not
optimal [5, 6].

In sections II and III we will discuss
expression templates and vectorization.
Section IV introduces Statically Accelerated
Loop Templates (SALT) [7] and explains the
ideas behind our optimization technique and
presents some implementation details. In
sections V & VI we discuss measurements
and an outlook of further possible
parallelization strategies by means of
OpenMP and Message Passing Interface
(MPI). Our final conclusions are presented in
section VII.

II. EXPRESSION TEMPLATES

Expression templates [5, 6, 8] were
invented independently by Todd Veldhuizen

[9, 10] and David Vandevoorde. This
implementation technique uses the static
evaluation abilities of modern C++ compilers
together with templates to construct a static
expression tree at compile time as shown in
Figure 1. This is typically used for loop
fusion. Instead of having every part of the
expression individually loop over the data
and perform an operation, only one single
loop is produced that performs the
composite expression. This helps reduce the
loop overhead (increments and conditional
jumps), can reduce the amount memory
accesses by keeping intermediate results in
registers and removes the need to allocated
temporary objects. Through the use of
template meta programming it is even
possible to manipulate the expression tree
at compile time, e.g., to apply algebraic
transformations. While the nodes of the
expression tree are technically template
classes their entirely static nature allows the
compiler to inline everything. In
consequence the creation of instances of
these classes does not incur any overhead
in the resulting machine code. This implies
that one can think of expression templates
as a form of code generation at compile
time.

The downsides of expression
templates are that they increase compile
times, the binary size and tend to produce
hard to read error messages. Compile times
and binary sizes are usually of no great
concern given availability of memory and the
performance of modern compilers. The error
messages C++ compilers produce in
connection with intricate template constructs

AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL. 10, NO.4 (2012)

3

on the other hand are a serious handicap.
Seemingly trivial syntax errors can result in
a cascade of hard to decipher errors and
warnings.

Expression templates are
implemented by returning abstracted
operation objects in operators and functions
that contain all necessary information,
instead of calculating the result themselves.
For example the addition operator will return
an AddExpr object that has references to the
operands and an evaluation function. The
operands in turn can also be expression
objects. Whit this approach complex
expressions are turned into an expression
tree at compile time. Accordingly we will
refer to expression objects as nodes in an
expression tree. The expression tree is only
evaluated when the actual need arises (lazy
evaluation). Typically this happens in the
assignment operator or in functions like the
dot product or norm. The actual loop is
contained in these functions and evaluates
the expression tree for every element it
needs. This also means that results that are
not requested are never computed.

III. VECTORIZATION

Most modern general purpose
processors over a set of vector instructions
that operate on registers that contain
multiple operands which allow instruction
level parallelism Single Instruction Multiple
Data (SIMD). These instructions are
instrumental for the optimization of vector
operations since the attainable performance
is usually a multiple of what is offered by the
more conservative Floating Point Unit (FPU)
instructions. To profit from SIMD instructions
in C++ one can either rely on the compiler to
detect loops that can be vectorized or
enforce SIMD instructions with inline
assembler or intrinsics rendering the code
non-portable. Since inline assembler does
not have a uniform syntax across compilers
it is not well suited for use inside a template
library. Intrinsics for Intel's Streaming SIMD
Extension (SSE) instruction set on the other
hand integrate well into standard C++ and
are supported by most compilers. Our
template library wraps the intrinsics and the
vector data types into a vectorizer template
class, hence the actual implementations of
the algorithms are independent of the
underlying instruction set. They only require

a specialized instance of the vectorizer
template for each targeted platform. In the
present form the library only contains a
specialization for Intel's SSE instruction set.

IV. IMPLEMENTATION

a. General Idea

The study of existing vectorization
methods in numeric libraries and simple
experiments showed that the main
performance gain of hand optimized BLAS
implementations comes from heavily
unrolled loops and instruction reordering.
While it was relatively easy to have a
compiler emit the “optimal" instructions via
intrinsics we lacked the ability to unroll the
loops in a controllable fashion. Even if the
compiler did unroll the loops there was no
way to consistently control the relative order
or multiple sets of memory and operation
instructions.

The main idea to achieve the
required control over the loop structure was
to use abstracted loop templates. These
contain calls to functions like load, store and
operation which are provided by the
expression tree. This approach separates
the instructions that are executed from the
order in which they are executed and gives
the control over both aspects to the library
implementer in place of to the compiler.

The SALT has three main
components which are used to assemble the
final loop (see Figure 2). The vectorizer
class provides the platform specific vector
instructions, the loop templates provide the
loop structure and the expression tree
defines the operation that is to be
performed. These three components are
then used to assemble the actual loop inside
an execute function that takes the
expression tree as its sole argument and
chooses an appropriate loop template while
the vectorizer is implicitly chosen by the type

parameter of the participating vectors.

b. Instruction Decomposition and Local
Storage

The expression tree nodes have to

provide all the necessary methods and
variables that are required for the loop. The
operations that are used inside the loops are
separated into load, store and

AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL. 10, NO.4 (2012)

4

Figure 2. Component interaction.

operation. The operation functions are
further subdivided into vector_op and
single_op. single_op is used to finish up
operations where the amount of data is not a
multiple of the SIMD vector size. Additionally
there are the init and load_once functions
that are called once at the beginning of the
loop to initialize local variables and possibly
perform calculations that have to be
performed only once for the whole loop. The
difference between init and load_once is that
init is called exactly once for the whole loop
while load_once is called every time the loop
is unrolled. The cleanup function
complements init. Some expression nodes
contain an additional reduction function
which is used to reduce multiple local
variables to a single result. In addition to the
functions defining the operation to be
performed the loop may require local
variables for intermediate results. When the
loop is unrolled it might even require one set
of variables for each time it was unrolled.
Additionally there can be variables that are
only needed once for the whole loop
independent of the unrolling. Since the loop
template cannot declare an arbitrary number
of local variables it instead declares a fixed
amount of variables (one for every time the
loop is unrolled) with a composite type
Storage that is also provided by the
expression tree. Similarly there is a type
TemporaryStorage that is only instantiated
once by the loop template. Listing 1 shows
the basic interface of an expression node
and Listing 2 shows an example loop
template that is unrolled twice.

c. Loop Structure

To attain near optimal performance
the loop has to be structured to minimize
pipeline stalls. This can be achieved by
using as many registers as possible and by
interleaving instructions such that the
distances between the usage of each
individual register is maximized. This is done
by grouping instructions into packages and
starting each instruction package with a
burst of load commands followed by a burst
of operation commands and finishing with a
burst of store commands, while retaining the
relative order of variable/register usage
inside each burst. By the time the operation
command is called on the first register the
load command has had the maximum
possible amount of time to complete. Also
grouping load and store instructions helps
the CPU to optimize memory bus usage.

To ensure optimal register usage
the instruction package size has to be
chosen depending on the amount of
registers used by each operation. This
number can be retrieved from the
expression tree and the appropriate loop
template can be chosen at compile time. For
that purpose the run function as seen in
Listing 2 is a member function of a template
struct that is specialized for different register
usage patterns.

A single iteration of the unrolled loop
can contain multiple instruction packages.
The number of packages per loop was
determined by trial. Choosing low numbers
of packages (usually only one) gives high

AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL. 10, NO.4 (2012)

5

performance for small vector sizes while
higher numbers yield better performance for
large vectors. We chose relatively high
numbers of packages for SALT since those
approximate the performance of BLAS
implementations better.

V. PERFORMANCE BENCHMARKS

Measurements are conducted for
three common vector operations: the dot
product (sDOT), vector scaling (sSCAL) and

operations of the form (sAXPY).

Tests were conducted by repeatedly
executing the operation on the same two (or
in case of sSCAL one) vectors. For the
purpose of checking the correctness of the
results, the elements of the input vectors
were set equal to their index. The results
were compared to Intel's MKL library (BLAS
interface) and to Eigen (expression
templates). MKL was chosen for being one
of the best performing BLAS
implementations for the Intel platform. Eigen

was chosen for being one of the most
established template libraries and for using
a very similar approach of optimization with
intrinsics. The results for a Intel Core i5-
580M CPU (2.66 GHz, 3.33 GHz
TurboBoost) are shown in Figures 3, 4 and
5. Additionally Figure 6 shows the results for
an out-of-place vector scaling operation

() which cannot be expressed as a
single BLAS call and therefore has to be
written as combination of a copy and a
scaling operation when using BLAS but gets
compiled into a single loop by the
expression templates. Compiler version and
optimization flags for both compilers are
shown in table 1. The version of SALT that
was used for the benchmarks is available at
[7].

a. Discussion

The graphs show, that SALT is
capable of matching and even exceeding
the performance of MKL and is able to

AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL. 10, NO.4 (2012)

6

deliver significantly higher peak
performances than Eigen. For small vectors
Eigen is capable of delivering higher
performance than both SALT and MKL
which is likely caused by lower overhead
since the loop unrolling requires more one
time branch instructions, especially in cases
where the vector is shorter than the length of
a single loop iteration. Also MKL, being a
precompiled library, cannot profit from
aggressive inlining and call optimizations to
the same extent as the template libraries
and has to cover more general cases like
unaligned and strided data which further
increases overhead. The results for the out-

of-place scaling operation (Figure 6)
demonstrates the ability of expression
templates to reduce the amount of memory
accesses that are caused by operations that
require multiple BLAS calls. Since these
vector operations are mostly bound by
memory bandwidth, SALT outperforms MKL
in this case by up to factor two.

VI. HIGHER LEVEL PARRALIZATION

The usage of SIMD operations
already provides instruction level
parallelism, but one might be interested in
additional parallelization on the thread and

AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL. 10, NO.4 (2012)

7

Figure 3. Performance results for the single precision dot product (sDOT) on an Intel Core i5-
580M CPU. The gray lines indicate the sizes of the different caches and the 17.1 GB/s memory
bandwidth of the processor used.

Figure 4. Performance results for the single precision vector scaling operation (sSCAL) on an
Intel Core i5-580M CPU. The gray lines indicate the sizes of the difference caches and the 17.1
GB/s memory bandwidth of the processor used.

AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL. 10, NO.4 (2012)

8

Figure 5. Performance results for the single precision operation (sAXPY) on an Intel

i5-580M CPU. The gray lines indicate the sizes of the different caches and the 17.1 GB/s
memory bandwidth of the processor used.

Figure 6. Performance results for the single precision out-of-place vector scaling operation
(sCOPY + sSCAL) on an Intel Core i5-580M CPU. The gray lines indicate the sizes of the
different caches and the 17.1 GB/s memory bandwidth of the processor used.

AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL. 10, NO.4 (2012)

9

Compiler Version Flags

GCC 4.5.2 -03 –msse3
ICC 12.0.2 -03 –msse3

Table 1. Compiler versions and flags.

process level. Thread level parallelization,
which is attractive for modern multicore
architectures, could be achieved easily by
inserting OpenMP pragmas into the loop
templates. When spawning additional
threads one has to be careful to avoid false
sharing and excessive overhead. For small
sized vectors that _t into the L1 cache of the
processor the execution times of the total
operation is in the order of a few hundred
thousand cycles. Spawning a thread each
time the operation is executed will often
have the opposite effect of reducing
performance by introducing overhead. In the
case of very large vectors it has to be noted
that the rate at which even a single core is
able to process data usually exceeds the
memory bandwidth of the system. The
sDOT (Figure 3) example demonstrates this
by achieving a peak throughput of about 60
GB/s for vectors that completely fit into the
L1 cache while the maximum memory
bandwidth of the used processor amounts to
only 17.1 GB/s. In cases where the
operation is already limited by memory
bandwidth on a single core, using multiple
cores that share a memory bus will not
increase performance. Better results might
be achieved by parallelizing “outside" of the
vector library.

Process level parallelization using a
data parallel ansatz and MPI
communication—which is popular in
software for cluster computers—can also be
provided by an expression template library.
Since the data parallel ansatz does not
directly affect how the individual operations
are carried out in each process, it is best
handled by an additional abstraction layer
thus enforcing the single responsibility

principle.

VII. CONCLUSIONS

The benchmarks show that our new
approach—Statically Accelerated Loop
Templates (SALT)—allows template libraries
to match the performance of BLAS libraries
and even outperform them in cases that

require the composition of BLAS calls.
Performance inconsistencies across
different compilers are greatly reduced in
comparison to existing template libraries.
SALT retains the math-like syntax and better
integration into standard C++ that comes
with using C++ specific features like
operator overloading and generic
programming, and allows existing template
algorithms to instantly benefit from efficient
vectorization. The strong separation of low
level instructions, expression building and
instruction ordering into the vectorizer class,
expression nodes and loop templates gives
unique access points for each aspect of the
algorithms and therefore simplifies
customization and extension of the
framework by following the single
responsibility principle. Additionally the pure
template character of the library makes it
easy to use and lightweight since no
additional libraries have to be linked or
compiled.

REFERENCES

1. Intel. Intel math kernel library.

http://software.intel.com/en-us/articles/
intel-mkl/.

2. Blitz++. http://www.oonumerics.org/
blitz/.

3. Gaёl Guennebaud, Benoît Jacob, et al.
Eigen v3. http://eigen.tuxfamily.org,
2010.

4. PETE. http://acts.nersc.gov/formertools/
pete/index.html.

5. C. Pflaum and Z. Rahimi.
“Parallelization of Staggered Grid Codes
with Expression Templates.” Journal on
Computational Science and Engineering
(2009).

6. J. Härdtlein, C. Pflaum, A. Linke, and
H.Wolters. “Advanced Expression
Templates Programming.” Computing
and Visualization in Science (2009).

7. SALT source code
http://amas.web.psi.ch/people/
aadelmann/pub/SALT.tar.gz.

8. J. Härdtlein. Moderne Expression
Template Programmierung—Weiterent-
wickelte Techniken und deren Einsatz
zur Lösung Partieller Differential-
gleichungen. PhD thesis, Univ. Erlangen
(2007).

9. Todd Veldhuizen. “Expression
templates.” C++ Report 7 (1995).

AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL. 10, NO.4 (2012)

10

10. Todd Veldhuizen. “Arrays in Blitz++.” In:
Proceedings of the 2nd International
Conference on Scientific Computing in

Object-Oriented Parallel Environments

(1998

).

