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ABSTRACT 

Vector operations play an important role in high performance computing and are typically 
provided by highly optimized libraries that implement the Basic Linear Algebra Subprograms 
(BLAS) interface.  In C++ templates and operator overloading allow the implementation of these 
vector operations as expression templates which construct custom loops at compile time and 
providing a more abstract interface.  Unfortunately existing expression template libraries lack the 
performance of fast BLAS implementations. This paper presents a new approach - Statically 
Accelerated Loop Templates (SALT) - to close this performance gap by combining expression 
templates with an aggressive loop unrolling technique. Benchmarks were conducted using the 
Intel C++ compiler and GNU Compiler Collection to assess the performance of our library relative 
to Intel's Math Kernel Library as well as the Eigen template library. The results show that the 
approach is able to provide optimization comparable to the fastest available BLAS 
implementations, while retaining the convenience and flexibility of a template library. 
 
I. INTRODUCTION 
 

Vector and matrix operations are 
important building blocks of numerical 
computations like solving a system of linear 
equations or integrating differential 
equations. Providing optimized imple-
mentations of these operations is therefore 
of great interest. Naive implementations are 
usually oblivious to hardware features and 
limitations that affect the performance and 
are subject to compiler optimization which 
may vary greatly across different compilers 
and optimization settings. The Basic Linear 
Algebra Subprograms (BLAS) interface with 
roots in the FORTRAN programming 
language has become the quasi standard for 
libraries that provide such optimized linear 
algebra routines. Examples for such libraries 
are the Automatically Tuned Linear Algebra 

Software (ATLAS), GOTO BLAS or Intel's 
Math Kernel Libraries (MKL) [1]. In the last 
decade FORTRAN has been overtaken by 
C/C++ as the primary language for scientific 
software and accordingly C/C++ bindings for 
BLAS libraries are being used to benefit 
from the optimized implementations. 
Unfortunately this approach falls short when 
language inherent features of C++ like 
operator overloading or templates are being 
used. More modern approaches are present 
in expression template libraries such as 
Blitz++ [2], Eigen [3] and the Portable 
Expression Template Engine (PETE) [4]. 

One added benefit of the expression 
template approach is the compile time 
construction of optimized loops. These 
allow, e.g., a reduction of memory accesses  
of operations that have to be expressed as 
multiple calls to BLAS routines but could be 
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Figure 1.  Expression tree for d = a + (b – c). 
 
 
written as a single loop, which is exactly 
what the expression template library does 
(loop fusion). Generic expression template 
implementations still rely on the compiler to 
apply additional optimization like the use of 
Single Instruction Multiple Data (SIMD) 
instructions (vectorization) or loop unrolling. 
Explicit vectorization for expression 
templates can be achieved with intrinsics 
which allow the emission of specific CPU 
instructions without the use of inline 
assembler. Apart from using the right 
instructions, the key to close to optimal 
performance is aggressive loop unrolling 
and instruction ordering that minimizes 
pipeline stalling. Loop unrolling can be 
achieved by template meta programming 
which tends to produce suboptimal register 
usage while the loop unrolling capabilities of 
the compilers are inconsistent and still not 
optimal [5, 6]. 

In sections II and III we will discuss 
expression templates and vectorization. 
Section IV introduces Statically Accelerated 
Loop Templates (SALT) [7] and explains the 
ideas behind our optimization technique and 
presents some implementation details. In 
sections V & VI we discuss measurements 
and an outlook of further possible 
parallelization strategies by means of 
OpenMP and Message Passing Interface 
(MPI). Our final conclusions are presented in 
section VII. 

 
II. EXPRESSION TEMPLATES 
 

Expression templates [5, 6, 8] were 
invented independently by Todd Veldhuizen 

[9, 10] and David Vandevoorde. This 
implementation technique uses the static 
evaluation abilities of modern C++ compilers 
together with templates to construct a static 
expression tree at compile time as shown in 
Figure 1. This is typically used for loop 
fusion. Instead of having every part of the 
expression individually loop over the data 
and perform an operation, only one single 
loop is produced that performs the 
composite expression. This helps reduce the 
loop overhead (increments and conditional 
jumps), can reduce the amount memory 
accesses by keeping intermediate results in 
registers and removes the need to allocated 
temporary objects. Through the use of 
template meta programming it is even 
possible to manipulate the expression tree 
at compile time, e.g., to apply algebraic 
transformations. While the nodes of the 
expression tree are technically template 
classes their entirely static nature allows the 
compiler to inline everything. In 
consequence the creation of instances of 
these classes does not incur any overhead 
in the resulting machine code. This implies 
that one can think of expression templates 
as a form of code generation at compile 
time.   

The downsides of expression 
templates are that they increase compile 
times, the binary size and tend to produce 
hard to read error messages.  Compile times 
and binary sizes are usually of no great 
concern given availability of memory and the 
performance of modern compilers. The error 
messages C++ compilers produce in 
connection with intricate template constructs 
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on the other hand are a serious handicap. 
Seemingly trivial syntax errors can result in 
a cascade of hard to decipher errors and 
warnings.   

Expression templates are 
implemented by returning abstracted 
operation objects in operators and functions 
that contain all necessary information, 
instead of calculating the result themselves. 
For example the addition operator will return 
an AddExpr object that has references to the 
operands and an evaluation function. The 
operands in turn can also be expression 
objects.  Whit this approach complex 
expressions are turned into an expression 
tree at compile time. Accordingly we will 
refer to expression objects as nodes in an 
expression tree. The expression tree is only 
evaluated when the actual need arises (lazy 
evaluation). Typically this happens in the 
assignment operator or in functions like the 
dot product or norm. The actual loop is 
contained in these functions and evaluates 
the expression tree for every element it 
needs.  This also means that results that are 
not requested are never computed. 

 
III. VECTORIZATION 
 

Most modern general purpose 
processors over a set of vector instructions 
that operate on registers that contain 
multiple operands which allow instruction 
level parallelism Single Instruction Multiple 
Data (SIMD).  These instructions are 
instrumental for the optimization of vector 
operations since the attainable performance 
is usually a multiple of what is offered by the 
more conservative Floating Point Unit (FPU) 
instructions. To profit from SIMD instructions 
in C++ one can either rely on the compiler to 
detect loops that can be vectorized or 
enforce SIMD instructions with inline 
assembler or intrinsics rendering the code 
non-portable.  Since inline assembler does 
not have a uniform syntax across compilers 
it is not well suited for use inside a template 
library.  Intrinsics for Intel's Streaming SIMD 
Extension (SSE) instruction set on the other 
hand integrate well into standard C++ and 
are supported by most compilers. Our 
template library wraps the intrinsics and the 
vector data types into a vectorizer template 
class, hence the actual implementations of 
the algorithms are independent of the 
underlying instruction set. They only require 

a specialized instance of the vectorizer 
template for each targeted platform. In the 
present form the library only contains a 
specialization for Intel's SSE instruction set. 

 
IV. IMPLEMENTATION 
 

a. General Idea 
 

The study of existing vectorization 
methods in numeric libraries and simple 
experiments showed that the main 
performance gain of hand optimized BLAS 
implementations comes from heavily 
unrolled loops and instruction reordering. 
While it was relatively easy to have a 
compiler emit the “optimal" instructions via 
intrinsics we lacked the ability to unroll the 
loops in a controllable fashion. Even if the 
compiler did unroll the loops there was no 
way to consistently control the relative order 
or multiple sets of memory and operation 
instructions. 

The main idea to achieve the 
required control over the loop structure was 
to use abstracted loop templates. These 
contain calls to functions like load, store and 
operation which are provided by the 
expression tree. This approach separates 
the instructions that are executed from the 
order in which they are executed and gives 
the control over both aspects to the library 
implementer in place of to the compiler. 

The SALT has three main 
components which are used to assemble the 
final loop (see Figure 2). The vectorizer 
class provides the platform specific vector 
instructions, the loop templates provide the 
loop structure and the expression tree 
defines the operation that is to be 
performed.  These three components are 
then used to assemble the actual loop inside 
an execute function that takes the 
expression tree as its sole argument and 
chooses an appropriate loop template while 
the vectorizer is implicitly chosen by the type 

parameter of the participating vectors. 
 

b. Instruction Decomposition and Local 
Storage 

 
The expression tree nodes have to 

provide all the necessary methods and 
variables that are required for the loop. The 
operations that are used inside the loops are 
separated into load, store and
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Figure 2.  Component interaction. 
 
 
 

operation. The operation functions are 
further subdivided into vector_op and 
single_op. single_op is used to finish up 
operations where the amount of data is not a 
multiple of the SIMD vector size. Additionally 
there are the init and load_once functions 
that are called once at the beginning of the 
loop to initialize local variables and possibly 
perform calculations that have to be 
performed only once for the whole loop. The 
difference between init and load_once is that 
init is called exactly once for the whole loop 
while load_once is called every time the loop 
is unrolled. The cleanup function 
complements init. Some expression nodes 
contain an additional reduction function 
which is used to reduce multiple local 
variables to a single result. In addition to the 
functions defining the operation to be 
performed the loop may require local 
variables for intermediate results. When the 
loop is unrolled it might even require one set 
of variables for each time it was unrolled. 
Additionally there can be variables that are 
only needed once for the whole loop 
independent of the unrolling. Since the loop 
template cannot declare an arbitrary number 
of local variables it instead declares a fixed 
amount of variables (one for every time the 
loop is unrolled) with a composite type 
Storage that is also provided by the 
expression tree.  Similarly there is a type 
TemporaryStorage that is only instantiated 
once by the loop template. Listing 1 shows 
the basic interface of an expression node 
and Listing 2 shows an example loop 
template that is unrolled twice. 
 

c. Loop Structure 
 

To attain near optimal performance 
the loop has to be structured to minimize 
pipeline stalls. This can be achieved by 
using as many registers as possible and by 
interleaving instructions such that the 
distances between the usage of each 
individual register is maximized. This is done 
by grouping instructions into packages and 
starting each instruction package with a 
burst of load commands followed by a burst 
of operation commands and finishing with a 
burst of store commands, while retaining the 
relative order of variable/register usage 
inside each burst. By the time the operation 
command is called on the first register the 
load command has had the maximum 
possible amount of time to complete. Also 
grouping load and store instructions helps 
the CPU to optimize memory bus usage. 

To ensure optimal register usage 
the instruction package size has to be 
chosen depending on the amount of 
registers used by each operation. This 
number can be retrieved from the 
expression tree and the appropriate loop 
template can be chosen at compile time. For 
that purpose the run function as seen in 
Listing 2 is a member function of a template 
struct that is specialized for different register 
usage patterns. 

A single iteration of the unrolled loop 
can contain multiple instruction packages. 
The number of packages per loop was 
determined by trial. Choosing low numbers 
of  packages (usually only one)  gives   high 
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performance for small vector sizes while 
higher numbers yield better performance for 
large vectors. We chose relatively high 
numbers of packages for SALT since those 
approximate the performance of BLAS 
implementations better.  
 
V. PERFORMANCE BENCHMARKS 
 

Measurements are conducted for 
three common vector operations: the dot 
product (sDOT), vector scaling (sSCAL) and 

operations of the form        (sAXPY). 

Tests were conducted by repeatedly 
executing the operation on the same two (or 
in case of sSCAL one) vectors. For the 
purpose of checking the correctness of the 
results, the elements of the input vectors 
were set equal to their index. The results 
were compared to Intel's MKL library (BLAS 
interface) and to Eigen (expression 
templates). MKL was chosen for being one 
of the best performing BLAS 
implementations for the Intel platform. Eigen 

was chosen for being one of the most 
established template libraries and for using 
a very similar approach of optimization with 
intrinsics. The results for a Intel Core i5-
580M CPU (2.66 GHz, 3.33 GHz 
TurboBoost) are shown in Figures 3, 4 and 
5. Additionally Figure 6 shows the results for 
an out-of-place vector scaling operation 

(    ) which cannot be expressed as a 
single BLAS call and therefore has to be 
written as combination of a copy and a 
scaling operation when using BLAS but gets 
compiled into a single loop by the 
expression templates. Compiler version and 
optimization flags for both compilers are 
shown in table 1. The version of SALT that 
was used for the benchmarks is available at 
[7]. 
 
a. Discussion 
 

The graphs show, that SALT is 
capable of matching and even exceeding 
the  performance  of  MKL  and  is  able   to  
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deliver significantly higher peak 
performances than Eigen. For small vectors 
Eigen is capable of delivering higher 
performance than both SALT and MKL 
which is likely caused by lower overhead 
since the loop unrolling requires more one 
time branch instructions, especially in cases 
where the vector is shorter than the length of 
a single loop iteration. Also MKL, being a 
precompiled library, cannot profit from 
aggressive inlining and call optimizations to 
the same extent as the template libraries 
and has to cover more general cases like 
unaligned and strided data which further 
increases overhead. The results for the out-

of-place scaling operation (Figure 6) 
demonstrates the ability of expression 
templates to reduce the amount of memory 
accesses that are caused by operations that 
require multiple BLAS calls. Since these 
vector operations are mostly bound by 
memory bandwidth, SALT outperforms MKL 
in this case by up to factor two. 

 
VI. HIGHER LEVEL PARRALIZATION 
 

The usage of SIMD operations 
already provides instruction level 
parallelism, but one might be interested in 
additional parallelization on the thread and 
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Figure 3.  Performance results for the single precision dot product (sDOT) on an Intel Core i5-
580M CPU.  The gray lines indicate the sizes of the different caches and the 17.1 GB/s memory 
bandwidth of the processor used. 
 

  
Figure 4.  Performance results for the single precision vector scaling operation (sSCAL) on an 
Intel Core i5-580M CPU.  The gray lines indicate the sizes of the difference caches and the 17.1 
GB/s memory bandwidth of the processor used. 
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Figure 5.  Performance results for the single precision operation        (sAXPY) on an Intel 

i5-580M CPU.  The gray lines indicate the sizes of the different caches and the 17.1 GB/s 
memory bandwidth of the processor used. 
 
 

 
 
Figure 6.  Performance results for the single precision out-of-place vector scaling operation 
(sCOPY + sSCAL) on an Intel Core i5-580M CPU.  The gray lines indicate the sizes of the 
different caches and the 17.1 GB/s memory bandwidth of the processor used. 
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Compiler Version Flags 

GCC 4.5.2 -03 –msse3 
ICC 12.0.2 -03 –msse3 

 
Table 1.  Compiler versions and flags. 
 
 
process level. Thread level parallelization, 
which is attractive for modern multicore 
architectures, could be achieved easily by 
inserting OpenMP pragmas into the loop 
templates. When spawning additional 
threads one has to be careful to avoid false 
sharing and excessive overhead. For small 
sized vectors that _t into the L1 cache of the 
processor the execution times of the total 
operation is in the order of a few hundred 
thousand cycles. Spawning a thread each 
time the operation is executed will often 
have the opposite effect of reducing 
performance by introducing overhead. In the 
case of very large vectors it has to be noted 
that the rate at which even a single core is 
able to process data usually exceeds the 
memory bandwidth of the system. The 
sDOT (Figure 3) example demonstrates this 
by achieving a peak throughput of about 60 
GB/s for vectors that completely fit into the 
L1 cache while the maximum memory 
bandwidth of the used processor amounts to 
only 17.1 GB/s. In cases where the 
operation is already limited by memory 
bandwidth on a single core, using multiple 
cores that share a memory bus will not 
increase performance. Better results might 
be achieved by parallelizing “outside" of the 
vector library. 

Process level parallelization using a 
data parallel ansatz and MPI 
communication—which is popular in 
software for cluster computers—can also be 
provided by an expression template library. 
Since the data parallel ansatz does not 
directly affect how the individual operations 
are carried out in each process, it is best 
handled by an additional abstraction layer 
thus enforcing the single responsibility 

principle. 
 

VII. CONCLUSIONS 
 
The benchmarks show that our new 
approach—Statically Accelerated Loop 
Templates (SALT)—allows template libraries 
to match the performance of BLAS libraries 
and even outperform them in cases that 

require the composition of BLAS calls. 
Performance inconsistencies across 
different compilers are greatly reduced in 
comparison to existing template libraries. 
SALT retains the math-like syntax and better 
integration into standard C++ that comes 
with using C++ specific features like 
operator overloading and generic 
programming, and allows existing template 
algorithms to instantly benefit from efficient 
vectorization. The strong separation of low 
level instructions, expression building and 
instruction ordering into the vectorizer class, 
expression nodes and loop templates gives 
unique access points for each aspect of the 
algorithms and therefore simplifies 
customization and extension of the 
framework by following the single 
responsibility principle. Additionally the pure 
template character of the library makes it 
easy to use and lightweight since no 
additional libraries have to be linked or 
compiled. 
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