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ABSTRACT 
This paper describes the development of a nonlinear closed loop motor control system for a quadcopter micro-unmanned aerial 
vehicle (micro-UAV) platform. Research groups have analyzed the performance of brushless direct current (BLDC) motors with 
nonlinear effects in various applications, focusing on areas such as friction’s effect on position. This paper analyzes the nonlinear 
effects of BLDC motors on speed when these motors are used in quadcopter flying robots. Notably, to account for nonlinear 
torque from the aerodynamic forces on a quadcopter rotor, a Control Lyapunov Function (CLF) approach is used in designing a 
stable feedback control system. The paper also explains the custom model and simulation of the system built in 
MATLAB/Simulink used to demonstrate and quantify the successful performance of the design. 
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INTRODUCTION 
One area of research and development that has enormous potential is the multicopter micro-UAV. This flying robot typically uses 
four propellers, one mounted on each of the four ends of a cross-shaped frame as shown in Figure 1. Two propellers lying 
opposite to each other both rotate clockwise, and the other pair rotates counterclockwise, canceling the torques. Pitch, roll, and 
yaw movements are achieved by varying the speed of the motors; the robot carries an onboard controller and battery as well. 1 
Quadcopters range in size as small as 6 centimeters from tip to tip and 3 grams in weight.2 
 

 
    Figure 1. A quadcopter micro-UAV. 

With their vertical flight and hover abilities, durability, and ease of use both indoors and outdoors, quadcopters are growing in 
popularity and have many promising applications, either as individual vehicles or in cooperation with others.2–5 Some of the uses 
include search and rescue, surveillance, exploration, photography, transport, and construction; quadcopters can be particularly 
helpful in environments that are inaccessible, contaminated, or otherwise dangerous.6, 7 

The performance of the quadcopter depends on the speed of response of the motors in achieving controlled, stable flight. 
Research groups studying quadcopters often assume unchanging aerodynamics, but quadcopters experience significant 
aerodynamic disturbance effects due to their surroundings, complex interactions with multiple UAVs or, at small scales, even to 
mild wind gusts.7, 8 Researchers often deal with these by reducing the speed, keeping greater distance between the quadcopter and 
its surroundings, using simpler trajectories, attempting to limit the roll and pitch angles, and controlling the environment.2 
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Quadcopters are poised to become a widely used technology, and improvements in quadcopter controls could have a significant 
impact on their efficacy. Researchers have taken many different approaches to this control system design, summarized well in 
References 6, 7, 9. A few of the techniques include vehicle control loops that use feedback linearization for velocity and attitude 
control,1, 4 proportional-integral-derivative (PID) control for attitude and position,2, 5 a predictor-corrector algorithm for angular 
velocity control,4 sequences of controllable trajectories accomplishing more complex maneuvers,5 iterative learning,5 and a 
decentralized adaptive controller for attitude and altitude.9 Instead, this work focuses on a fundamental control problem for 
quadcopter systems: the stable and precise response of the onboard low-level motor controllers. 

Quadcopters use Brushless DC (BLDC) motors, each with an electronic controller that determines the rotor’s phase over time 
(and therefore speed) via a sensor or with so-called sensorless methods, and uses the information to drive the rotor’s rotation. 
BLDCs offer advantages over the older, electromechanically commutated, brushed DC motors: greater power efficiency, finely-
adjustable speed, precise motion control, ease of programmability, and low maintenance.10 

Other research groups have analyzed the performance with nonlinear effects of BLDCs in various applications, focusing on areas 
such as the effect of friction on position.11, 12 In particular, this paper differs from the work done by Sabra et al.11 since this paper 
analyzes the nonlinear effects of BLDC motors on speed for quadcopter applications, and this paper utilizes a set point tracking 
analysis to ensure that the system is stable around a constant equilibrium point. Specifically, the goal of this work is to derive a 
nonlinear closed loop feedback control equation and prove the stability of the system using Lyapunov stability analysis with a 
Control Lyapunov Function (CLF). This work includes a simulation in MATLAB/Simulink of a propeller/BLDC motor system 
with friction, propeller torque and damping control. The simulation implements the model system and is used to demonstrate and 
measure the performance of the system. 

This paper is organized as follows. The Methods and Procedures section contains subdivisions explaining CLF theory, the quadcopter 
motor model, Lyapunov analysis, and the custom Simulink simulation. The Results and Discussion section is next, followed by the 
final section which offers conclusions and areas for further research. 

METHODS AND PROCEDURES 
Theory of CLF 
This project builds on prior research using CLF as a method of controlling nonlinear systems.1, 11, 13 Lyapunov stability, developed 
by mathematician Aleksandr Mikhailovich Lyapunov, guarantees the stability of a closed nonlinear system when certain scalar 
functions, the Lyapunov functions, meet a set of criteria summarized below.  

Consider a nonlinear system represented by the following state space equation: 

               Equation 1. 

 is a vector field in ,  represents the state variables, and  represents the control function. 

A Lyapunov function, denoted , must fulfill certain requirements to prove system stability.  is positive definite if 
 and  for , while the time derivative  is negative definite if  and   for . If 

 is a continuously differentiable positive definite function such that  is negative definite, then the system is 
asymptotically stable; if no suitable Lyapunov equations can be found such that  and  are not positive definite and 
negative definite, respectively, then the system cannot be proven to be asymptotically stable.14, 15 

While the Lyapunov functions for some nonlinear systems are physical energy functions, in many cases there is no specific 
method for crafting Lyapunov functions, which then must be found through trial and error.  

A nonlinear system is considered affine (or linear-in-control, since a linear proportional controller is used to control the nonlinear 
system) with respect to the input when the system has the form 

  Equation 2.
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Since , the , are vector fields in . Specifically, they are  equations of the form 

  Equation 3.

 

The system is assumed to have an initial condition  such that . Assume a positive definite Control Lyapunov 
Function, , exists where  represents all variables implemented in the Lyapunov function. Therefore, 

  Equation 4.

 

Substituting for  gives  

  Equation 5.

 

If , then  

  Equation 6.

 

This feedback law, , is called damping control.14 

The Quadcopter Motor Model 
The damping control method explained above will now be applied to the system depicted in Figure 2. The system is an 
equivalent circuit model containing a control voltage, a characteristic resistance and inductance, and a DC motor driving a 
propeller. 

 
Figure 2. An equivalent circuit model of a series DC motor. 
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Table 1 shows the motor parameters used in the model. In addition to the common features of a typical motor such as resistance, 
inductance, current, angular velocity, and moment of inertia, several other parameters are included in order to model 
nonlinearities effectively. For example, the model includes back EMF, which is induced when the permanent magnets in the 
motor rotate. Also included is the torque constant, which represents the torque generated by the current flowing through the 
motor. The viscous friction coefficient represents the friction generated by the rotating motor shaft, and the propeller 
aerodynamic constant is a measure of how the form of the propeller generates torque on the motor shaft as it rotates and creates 
thrust in air of a given density. 

Parameter Description Units 

 Control voltage Volts, V 

L Inductance Henrys, H 

I Motor current Amperes, A 

R Resistance Ohms,  

 Back EMF constant V s / rad 

 Input voltage Volts, V 

 Rotor angular velocity rad / s 

J Moment of inertia kg m2 

 Torque constant N m / A 

b Viscous friction coefficient N m s / rad 

 Propeller aerodynamic constant kg m2  N2 / s2 

Table 1. Parameters for the motor model. 
 
The model of the dynamic BLDC motor driving a propeller is represented by a set of nonlinear state equations. The equation for 

 includes the nonlinear term  , which represents the magnitude and direction of the propeller torque: 

 
 
 

Equation 7.

Alternatively: 

 
 

 
Equation 8.

 

First, an analysis of the motor model with a fixed set point — or target state that the control system seeks to maintain — is 
developed. The equations relating change in current and change in angular velocity around the set point are given by 

  Equation 9.
  

where  and  represent a non-zero equilibrium point resulting from a constant input voltage, . Specifically, they satisfy 

  
 

To ensure that the system can track a constant set point, the expressions for  and  are substituted into the state equations for 
change in current and change in angular velocity as follows, starting with the equation for current: 

                                               Equation 10. 
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Substituting for  and , another expression is obtained, 

                                                                 Equation 11. 

which is similar in form to the original state equation. Next, the set point analysis for the change in angular speed is developed. 
For the case  and after substituting for and , 

                                                Equation 12. 

The above analysis transforms the state equations to be dependent on variables  and , or the distance moved in current and 
angular velocity from the equilibrium point and . Next, a Lyapunov analysis will be conducted on the new state equations to 
demonstrate that the system is globally asymptotically stable around that equilibrium point. 

Lyapunov Analysis 
Let the chosen Control Lyapunov Function  be a function of two variables  and  with  and  being control parameters: 

 .                                                                    Equation 13. 

Since  for all values of  and , and  when ,  is a positive definite function, which meets 
the first Lyapunov requirement.  is given by the equation (for ): 

 

 

 Equation 14.

 

For , the above equation is replaced with the following: 

  Equation 15.

 

In both cases,  when . To ensure that  is negative definite and  for all values of  and , 

 and  must cancel to zero. For this to occur,  and . Therefore, as long as 

 ,  is negative definite, which meets the second Lyapunov requirement, and thus the system is asymptotically stable.  

Next, the damping control analysis is carried out by casting the equations back into the form of Equation 3, with  and 
, mapping .  

  Equation 16.

 

                                                                         Equation 17. 

Substituting Equations 6 and 9 results in a new damping control function. 

  Equation 18.
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Simulation 
The simulation of the electrical current control of the DC motor was created in MATLAB/Simulink, and the block diagram is 
shown below. The block diagram implements the two state equations and damping control function that were explained 
previously. The design uses standard components like the integrator, gain, adder, and multiplier blocks, as well as the user-selected 
parameters that define system dynamics. Simulink calculates the system response to the user’s inputs and initial conditions, and 
displays are the user-selected data signals, while dynamically showing rise time, settling time, and more. 

 
Figure 3. Simulink model of the electric current control for the DC motor. 

 
The constant  input, similar to a current setpoint in a control system, complements the effects of the setpoint voltage, , and 
speeds up the response of the system. The net constant input to the system is .   

The baseline motor parameter values in Table 2 below, except for , were taken from the datasheet of a well characterized, 
commercially available, BLDC motor that possesses a power specification typical of quadcopter motors.16 The value of  was 
calculated from a static coefficient taken from publicly available quadcopter research data.17 Specifically, the propeller coefficient 
for a  inch propeller, , was substituted into the equation: 

  Equation 19.

where  kg/m3 and , which equals  m (  inches), is the diameter of a typical quadcopter rotor, resulting in a 
 of  kg m2 N2/s2.  

Parameter Baseline value 
L 0.48 mH 
I Motor current, A 
R 0. 0  

 1.10 · 10-2  V s / rad  
 Rotor angular velocity, rad / s 

J 3.60 · 10-6 kg m2 
 0.0109 N m / A 

b 3.30 · 10-4 N m s / rad 
 8.24 · 10-6 kg m2 N2 / s2 
Table 2. Baseline motor parameter values.  
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RESULTS AND DISCUSSION  
According to the Lyapunov stability analysis demonstrated earlier, the motor control system simulated in Simulink should be able 
to track a constant set point while remaining asymptotically stable. As a demonstration, the simulation was run with various values 
for control parameter  and using the baseline parameters in Table 2. A graph of current versus time for various values of  is 
shown in Figure 4 below, and a graph of angular velocity versus time for various values of  is shown in Figure 5 below. The 
system showed stable behavior since it could track rise times smoothly for all values of  tested, with rise time being the time 
elapsed during the transition from  to  of its steady state current or angular velocity, starting from zero. Note that the 
system tracked rise times smoothly and quickly, with no overshoot, oscillation, or other signs of instability. 

      
Figure 4. Simulation current response for a range of control parameter , but motor parameters held constant. 
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Figure 5. Simulation angular velocity response for a range of control parameter c1, but motor parameters held constant. 

As these results demonstrate, the larger  values result in faster response times, while the system remains stable even for very 
high values of , consistent with theory.  However, to further demonstrate the robustness of the system, another test must be 
completed. In the next test, the values of physical parameters are decreased or increased to examine the effect on system 
performance. 

The parameters that vary during this test are and . In the real world, the physical parameters that determine 
the performance of the quadcopter BLDC may vary from nominal values due to measurement errors, manufacturing variance, 
and environment changes such as temperature and air density. Figure 6 below shows the simulated steady state current as  
increases with varying motor parameter values. To illustrate a wide variation from nominal, all the parameters are inputted as 
either  or  of the baseline values. Simulations test all parameters set at both percentages and for all possible 
combinations. The graph in Figure 6 below shows that the steady-state current value is robust to variations in all motor 
parameters tested. Steady-state current variation in the presence of motor parameter variation improves a great deal as the control 
parameter  increases.  These results demonstrate that the system is robust to variations in motor parameter values, since the 
system remains stable for the wide variation of parameter values tested and the response varies in a narrow range. 
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Figure 6. Histograms showing steady-state current variation across all motor parameter combinations. 

As  increases, the variation improves to near zero at . 
 
CONCLUSIONS 
As shown, Lyapunov stability theory was applied to closed loop current control of a BLDC motor. A Lyapunov function was 
designed with associated feedback control that was proven to make the system stable. A model and simulation of the nonlinear 
BLDC motor showed the accuracy and robustness of the mathematical derivation. 

There are several potential paths for future research on this motor control system. One topic for future research could be to 
include a full PID controller to minimize steady state error and possibly improve response time, and analyze the PID controller 
for stability. In addition, considering that the damping control method resulted in feedback only for the electric current variable, 
another area of study could be to use a different analysis technique that allows feedback control using the speed variable, 
including possibly a PID controller for speed. A third area for future research could be to build a physical model of the system 
and compare this model to the theory behind it. 
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PRESS SUMMARY 
One area of research and development that has enormous potential for many promising applications is the quadcopter micro-
unmanned aerial vehicle (micro-UAV) platform. Quadcopters are poised to become a widely used technology, and improvements 
in quadcopter controls could have a significant impact on their efficacy. This paper analyzes nonlinear effects on brushless direct 
current (BLDC) motors when used in quadcopter flying robot applications. Specifically, the goal of this work is to use advanced 
mathematics to derive a nonlinear closed loop motor control equation and prove the stability of the system using Lyapunov 
stability analysis. This work includes a custom simulation of the system in MATLAB/Simulink that successfully demonstrates and 
quantifies the performance of the design. 


