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ABSTRACT 

A very common phenomenon in car traffic is investigated in this article.  The problem is one-
dimensional.  We find the wave equation of the traffic, and illustrate a simulation using Matlab 7.6 
 
 
 
I. INTRODUCTION 
 

Several articles and investigations 
have shown an increasing realization of the 
need for a scientific approach to various 
aspects of road traffic, a field that seemed 
formerly to lie at the periphery of physics.  
Nowadays, most of us experience car traffic 
during daily commutes, especially along ring 
roads around major cities.   Here in Tehran, 
I have personally experienced large traffic 
jams along the Hemat highway involving 
thousands of cars.  This stimulated me to 
investigate and model this type of car traffic, 
especially the conditions that lead to traffic 
jams. [1] 

 
II. THEORY 
 
a. Parameter Definitions 

 
I will take a simple approach and 

focus on only one of the traffic lanes.  In a 
traffic jam when traffic is heavy, cars will 
have limited opportunities to shift lanes, so 
this seems a reasonable first model.  Let’s 
consider this lane to be the “passing” or 
fastest lane. 

To start our work, suppose there are 
n cars driving at speed V0 in one lane and 
that the safe distance [2] between cars at 
the rated speed is l (Fig. 2). For 
convenience, let us neglect the delay in 
drivers’ reaction times.        An interruption is  

 
Figure 1.  Hemmat Highway during rush 
hour. 
 

 
applied to the system  at t = 0 to a first car in 
traffic such that it suddenly stops—
remember, we are assuming that drivers can 
control their cars without delays.  Each 
following car should slow to a stop in a safe 
distance l’ from the car in front of it. 
 
b. Speed Control Modeling 

 
As mentioned above, at rated speed 

(V0) all cars should maintain a safe distance 
l from the car in front of them.  Since each 
car should stop in minimum distance l’, it is  *  Amin67r@gmail.com 
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convenient to model speed control by a 
linear function of the distance between the 
two cars.  That is, the velocity of car “k” will 
depend on how far it is from car “k-1” in front 
of it.  Mathematically we can formulate this 
as, 

 

  ( )        (  ( )    )    (1) 

 
Where lk is the distance between the k

th
 car 

and the (k-1) car immediately in front of it, 
and α is a constant which is determined by 
taking Vk = 0 when lk = l’.  We note that α 
can be different from car to car [3] though 
we will assume that all cars have the same 
safe distance, for convenience. 
 

       (     ) 
 
Therefore, 
 

   
  

    
  (2) 

 
From the definition of lk we have 
 

   ( )

  
     ( )     ( )    (3) 

 
Substituting (3) into (1) we get a new 
equation for Vk(t): 
 

   ( )

  
   (    ( )     ( ))    (4) 

 
This, which has dimensions of acceleration, 
can be interpreted in terms of two effective 
forces [4]: motor reaction and a force 
proportional to the velocity (for example, a 
drag force due to air resistance). 
 
c. Propagating Wave 
 

Equation 4 describes a discrete 
wave that propagates over the cars.  The 
information of the carrier wave is the 
interruption that the first car has made in the 
system.  In order to find the velocity of the 
wave, suppose that the velocity of the (k-1)

th
 

car is equal to the velocity of the k
th
 car after 

passing time τ.  That is, 

 

    ( )     (    )         (5) 

 

 
Figure 2.  An interruptions at t = 0 causes 
all cars to stop. 
 
 

Assume τ is very small compared to t.  
Thus, it is possible to expand (5) to first 
order in τ. 
 

  (    )    ( )   
   ( )

  
         (6) 

 
Substituting (6) into (4) we have, 
 

   ( )

  
   (

   ( )

  
 )          (7) 

 
And therefore, 
 

   
 

 
  

    

  
              (8) 

 
The velocity function of the first car (V1(t)) 
affects the motion of all other cars.  Saying 
this another way, (4) has too many answers 
as a propagating wave.  These answers are 
responses to V1(t) as an input to the car 
traffic system.  Let us put all variables Vk(t) 
in a vector V, i.e. 
 

   (

  

  

 
  

)  

 
Therefore, (4) is changed into an ordinary 
differential equation of vectors and matrices. 
 

 ̇        (9) 

 where, 
 

   

[
 
 
 
 
    
    
    

 
 
 
 

   
      ]

 
 
 
 

 

and 
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(a)                                                                          (b) 
 
Figure 3.  a) At left, a plot of V2(t) versus time; b) at right, a plot of safe distance l2(t) from the first 
car versus time.  Note: as V2(t) approaches 0 m/s, l2(t) approaches 1 m. 
 

 

   [

   ( )
 
 
 

] 

 
is the input vector.  As you see, we have 
considered V1(t) as an input to the car 
system.  This is because if the function V1(t) 
is determined then all Vk(t) are known. 

Equation (9) is a first order 
differential matrix equation.  Thus it is easy 
to solve and get answers.  One method is to 
apply the Laplace Transform to both sides of 
the equation.  We will solve (9) using a 
Matlab computer simulation. 
 

 
III. MATLAB SIMULATION 
 
a. Breaking Process 

 
We are interested to sketch the 

wave function V(k,t), as described by 
equation (4). As a function of the car index 
k.  Let us take V1(t) = 0 for all t, meaning that 
all cars should prepare to break and come to 
a stop. 

Since the first car is stopped, the 
safe distance l2(t) decreases continuously, 
and therefore the driver of the second car 
pushes the brake pedal instantly.  Figure 
3(a) shows the velocity of the second car, 
V2(t) versus t.  Figure 3(b) depicts the safe 

distance l2(t) as a function of time.  The 
values of the parameters used in Figure 3 
are gathered together in Table 1.  We will 
use these values throughout the present 
analysis.  These numbers are obtained from 
real observations and experiments along the 
Hemmat Highway in Tehran. 

 
 

 

Parameter 
 

Value 

 
l 
 

 
10 m 

 
l' 
 

 
1 m 

 
V0 
 

 
100 km/h ≈ 28 m/s 

 
n 
 

 
200 

 

α = 
  

    
 

 

 
3.08 s

-1 

 

   
 

 
 

 

 
0.324 s 

 

Table 1.  Values of parameters. 
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Figure 4.  Plot of Vk(t) versus k (index for the cars) at time equal to 5s.  Each dot represents a 
car. 

 

 
Figure 5.  Plot of the safe distance function lk(t) for each of the 200 cars at time equal to 5s.  Dots 
represent individual cars. 
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Figure 6.  Graph of velocity versus k at different sampling times. We call it the Brake Wave.  
Numbers on the plots are time values. 
 
 
 

Now let us look at the wave function 
V(k,t).  We will model a stretch of highway 
on which 200 cars are driving.  It is useful to 
illustrate the V(k,t) function versus k, at a 
specific time.  Figure 4 shows the velocity of 
each car (k) at a fixed time t = t0.  According 
to the parameters in Table 1, at t = 5s 
almost 10 cars have stopped and nearly 20 
cars are in the middle of braking preparing 
to stop.  The other 170 cars are driving at 
the rated speed V0. 

Figure 5 shows the safe distance 
function lk(k) for each car at time t = 5s.  As 
you may notice, this distance is 1m (= l’) for 
stationary cars and 10m (= l) for cars driving 
at the rated speed. 

Figure 6 depicts the velocity-car 
curve for different values of sampling time: 
5s, 10s, 15s, 20s and finally 40 s.  It is 
similar to a moving wave that propagates to 
the right.  Obviously, as the wave 
propagates to the right, its shape changes a 

bit.  This change is recognized by the 
change in the number of cars with velocities 
between 0 and V0.  This means that the 

value of τ calculated in equation (8) 

depends on t.  As Figure 6 shows, this 
dependency is not strong. 

The wave function Vk(t) moves with 
speed α (≈3) of about 3 cars per second.  
However, the upper side of the wave shape 
moves faster than the lower side.  That is, 
the number of cars preparing to stop 
increases with time.  We will discuss this 
further in Section IV. 

 
b. Running Process 
 
In this section, we will assume that all cars 
are stationary, separated by a distance l’.  
Therefore all cars initially have Vk(0) = 0. At t 
= 0, the first car starts to move and it 
reaches the rated velocity very quickly.  
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Figure 7.  Plot of Vk(t) versus k (cars) at time equal to 5s from the start of a process.  Each dot 
represents a car. 

 

 
Figure 8.  Graphs of velocity versus k at different sampling times.  We call it the Run Wave.  
Numbers written on the plots are time values in seconds. 
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Figure 9.  Plot of Vk(t) versus k for T = 20s at t = 25s. 
 
 
We are interested in finding the step 
response of the car-traffic system.  We take 
the input of the system as 

 

  ( )       ( )          (10) 

 
Where u(t) is the unit step function.  Figure 7 
shows the result of running the simulation to 
check behavior for t > 5s. 

As in Figure 6, we have depicted the 
moving wave function Vk(t) for several time 
values: 5s, 10s, 15s, 20s and 40s.  It is 
noticeable that the shape of the curve 
changes as it passes over the cars.  That is, 
the lower part of the wave propagates faster 
than the upper part. 

 
c. Brake and Run Process: Interruption 

Phenomenon 
 

Now let us consider the situation 
discussed in Section II B (Speed Control 
Modeling), i.e. the braking process.  But this 

time the first car will continue along its path 
after a time delay.  In this section we will 
assume that the first car is at rest at t ≤ 0 
and stays at rest until t = T when it begins to 
move.  Therefore the input function for the 
system is taken to be  
 

  ( )       (   )        (11) 

 
The same as in previous sections, we want 
to find the step response of the car-traffic 
system.  Figure 9 shows the wave function 
Vk(t) versus k for T = 20s.  Figure 9 is similar 
to Figure 6 apart from the Run process.  
According to this figure, almost 30 cars are 
still at rest. 

Figure 10 depicts the same plot at t 
= 45s.  Note that about 7 or 8 cars are at 
rest.  It seems that the Run-wave travels 
faster than the Brake wave.  This should be 
no surprise: we saw in Figures 6 and 8 that 
the lower part of the Run wave travels faster 
than the upper part, and also that the lower  



AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH  VOL. 9, NO. 4 (2011) 

 

12 

 

 
Figure 10.  Plot of Vk(t) versus k with T = 20s at t = 45s. 
 
 
part of the Brake wave travels more slowly 
than the upper part of the wave shape.  
Since we have symmetry in the problem (the 
equation of motion is the same), it must be 
that the lower part of the Run wave moves 
faster than the Brake wave’s lower part.  
This means that after some characteristic 
time, no car would stop completely though 
speed would be reduced.  This is observed 
to be a real-life phenomenon.  That is, if the 
interruption time is T seconds for the first 
car, it is shorter for the k

th
 car and may 

approach zero for cars far back from the first 
car.  When this happens we say that the 
information has decayed to wave 
propagation. 
 

IV. DELAYED STEP RESPONSE 
 
In this case, we focus on the 

delayed step response of the system when 
input is as given in (11), namely 

 

  ( )       (   ) 
 

First of all, let us start with (4) and use 

equation (5) to find the dependence of τ 

(wave period) on both time and k.  In 

general τ(t,k) is a function of both t and k.  

In (6) and (7) we had an approximate 

determination τ to be a constant.  But now, 

let us expand equation (6) to second order 

in τ.  Doing this we have, 

 

  (   )    ( )   
   ( )

  
   

    ( )

   

  

 
                        (12) 

 
 
Substituting (12) into equation (4) gives, 
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   ( )

  
     (

   ( )

  
   

    ( )

   

  

 
)                    (13) 

 
 
 
Extending our first-order expansion, we can 

expand τ to second order to get, 

 

    
 

 
  

 

  
         (14) 

 
Simplifying equation (13) using (14), we get 

to a new equation in τ. 

 
 

 

    ( )

   
   

   ( )

  
           (15) 

 
Therefore, 
 

    
 

 
  

 

   

    ( )

   

   ( )

  

        (16) 

 
Using equation (13) one more time, we gain 
a form that may be easier to understand. 
 

    
 

  
 (   

     ( )

  
   ( )

  

)        (17) 

 
If you focus on the lower part of the Brake 
wave graph (Figure 6), the magnitude of the 
k

th
 car’s acceleration is more than that of the 

(k-1) car.  In contrast, at the upper end of 
the Brake wave, the acceleration magnitude 
of the k

th
 car than that of car (k-1).  Thus, 

according to equation (17), the Brake wave 
propagates faster at the upper side. 

From symmetry, in the Running 
wave (Figure 8) the lower part travels faster 
than the upper side (see Figure 10).  Thus 
there is an interference, and the two waves 
(Brake and Run) go through each other at 
the lower side of the wave shape. 

 
V. FLOW RATE AND DENSITY 

FUNCTION 
 
Let us define q(x,t) as a flow rate of 

the cars, that is, q(x,t) is the number of cars 
per unit time passing a given point x at time t 
(a flux).  Therefore, 
 

 (   )  
  ( )

  ( )
       (18) 

 
Using equation (1) to substitute for Vk(t), 
 

 (   )  
     

  ( )
           (19) 

 
Also, we can define the numbers of cars per 
unit length of highway as a function of 
location and time: 
 

 (   )  
 

  ( )
              (20) 

 
Joining equations (19) and (20) we get an 
equation relating flow rate and density: 
 

  (     )          (21) 

 
If we assume that the maximum allowable 
speed is V0 then for lk(t) > l, equation (21) 
reduces to 
 

                       (22) 

 
Figure 11 displays both equations (21) and 
(22). 

The behavior seen in Figure 11 is 
similar to what is seen in the relationship 
between flow and density on highways.  
That is, the flow increases to a maximum 
value and then begins to decrease with a to 
a lower rate [5, 6]. 

 
VI. CONCLUSION 
 

We have presented a microscopic 
model for traffic flow that shows how 
macroscopic kinematics emerge from the 
behaviors of individual cars.  Traffic flow has 
been modeled from the perspective of the 
individual driver, making it well suited for 
simulation. 

The traffic wave was investigated 
and plotted using Matlab® 7.6.  The group 
velocity of the wave was determined using 
an equation of motion, and we have shown  
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Figure 11.  Relationship between flow and density along the highway. 
 
 
that the group velocity differs from side to 
side of the wave shape. 

We introduced a new input to the 
traffic model: the velocity of each car 
depends on a feedback of the distance to 
the car in front of it, with a constant “set 
point” l. 
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