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ABSTRACT 

 

For the class of functions 𝑓𝑐 𝑥 = 𝑥2 + 𝑐, we prove a conditional bound on the number of rational 

solutions to 𝑓𝑐
𝑁 𝑥 = −1 and make computational conjectures for a bound on the number of 

rational solutions to 𝑓𝑐
𝑁 𝑥 = 𝑎 for 𝑎 in a specific subset of the rationals. 

 
I. INTRODUCTION 
 
a. Definitions 
 

Fix a rational number 𝑐 ∈ ℚ and 

define a function 𝑓 by 𝑓𝑐 𝑥 = 𝑥2 + 𝑐.  Let 𝑓𝑐
𝑁 

denote the N
th
 iterate of 𝑓𝑐  defined as 

𝑓𝑐
𝑁 𝑥 = 𝑓𝑐 𝑓𝑐

𝑁−1 𝑥  .  Important concepts in 

the theory of arithmetic dynamics include 
periodic points, preperiodic points and pre-
images: 
 

Definition: A point 𝑥0 is periodic if 𝑓𝑐
𝑁 𝑥0 =

𝑥0 for some 𝑁 ≥ 1. 
Definition: A point 𝑥0 is preperiodic if 

𝑓𝑐
𝑁 𝑥0 = 𝑓𝑐

𝑀(𝑥0) for some 𝑁,𝑀 > 0 such 
that 𝑁 ≠ 𝑀. 

Definition: Fix 𝑎 ∈ ℚ.  A point 𝑥0 is an N
th
 

pre-image of 𝑎 if 𝑓𝑐
𝑁 𝑥 = 𝑎, we say 

𝑥0 ∈ 𝑓𝑐
−𝑁 𝑎 . 

 
In this paper we investigate pre-

images.
1
  More precisely, we consider the 

problem of determining how many pre-
images of a fixed rational number are 
rational.  Before discussing what is known, 
we introduce some terminology. 
 
Definition: The set of rational pre-images of 

𝑎 is 
 

                                                           
1
 For more on periodic and preperiodic points, 

see [4], [5]. 

 𝑓𝑐
−𝑁

𝑁≥1

 𝑎  ℚ = {𝑥0 ∈ ℚ: 𝑓𝑐
𝑁 𝑥0 

= 𝑎 for some 𝑁 ≥ 1} 
 

Definition: The set of points in the (x,c)-

plane satisfying the equation 𝑓𝑐
𝑁 𝑥 = 𝑎 is 

called the N
th
 pre-image curve of 𝑎, denoted 

𝑌𝑝𝑟𝑒 (𝑁, 𝑎). 
  

Here is an example of the type of 
problem we will consider. 
 

Example: 𝑎 = −
3

4
 and 𝑐 = −

229

144
 

Let us find the set of rational pre-images: 
 

𝑓𝑐
−1 𝑎  ℚ =   ±

11

12
 ,  

 

𝑓𝑐
−2 𝑎  ℚ =   ±

19

12
 ,  

 

𝑓𝑐
−3 𝑎  ℚ =   ±

1

12
 ,  

and 
 

𝑓𝑐
−4 𝑎  ℚ = ∅. 

 

Since 𝑐 ∈ ℚ, we have 𝑓𝑐  
𝑝

𝑞
 ∈ ℚ for all 

rational numbers 
𝑝

𝑞
.  Therefore, if 

𝑓𝑐
−𝑁 𝑎 (ℚ) = ∅ then 𝑓𝑐

−𝑀 𝑎 (ℚ) = ∅ for all 
𝑀 > 𝑁 > 0.  Hence, there are 6 rational pre-

images of 𝑎 = −
3

4
 for 𝑐 = −

229

144
 . 

In [3], the authors prove that for all 
𝑎 ∈ ℚ, there are finitely many rational pre-
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images of 𝑎 and that there exists a bound 

𝜅(𝑎) independent of 𝑐, on the size of the set 

of rational pre-images of 𝑎. 
 

Theorem 1.1. ([3], Thm. 1.2 for B=D=1)  Fix 

𝑎 ∈ ℚ.   If we define the quantity 
 

𝜅 𝑎 = #𝑐𝜖ℚ
𝑠𝑢𝑝    𝑓𝑐

−𝑁

𝑁≥1

  𝑎 (ℚ) , 

  

Then 𝜅 𝑎  is finite. 
 
This result has a strong analog in 

the theory of elliptic curves.
2
  Let 𝐸 ℚ  be an 

elliptic curve with a group of rational points 
𝐸(ℚ).  Mazur’s Theorem says that the 
torsion subgroup of 𝐸(ℚ) is isomorphic to 
one of fifteen possible groups.  In the 

language of arithmetic dynamics, if 𝒪 is the 

identity for 𝐸(ℚ) and  𝑚 :𝐸(ℚ) ⟶ 𝐸(ℚ) is 

the multiplication by 𝑚 map (if 𝒫 ∈ 𝐸(ℚ) 

then  𝑚  𝒫  “adds” 𝒫 to itself 𝑚 times) then 
Mazur’s Theorem says that the number of 

pre-images of 𝒪 under  𝑚  is finite and 

bounded above independent of the choice of 
elliptic curve 𝐸 ℚ . 

 
Theorem 1.2. ([2], Thm. 2.1—Mazur)  Let 

𝐸 ℚ  be an elliptic curve.  If we define the 
quantity 
 

𝜅′ = #𝐸 ℚ 
𝑠𝑢𝑝     𝑚 −𝑁

𝑁≥1

  𝒪 (ℚ)  

then 𝜅′  is finite. 
 
b. Computing 𝜅 𝑎 .   
 
 Although Theorem 1.1 ensures that 
𝜅 𝑎  exists, it does not provide a method for 

computing 𝜅 𝑎 .  In [2], the authors 
conditionally prove 𝜅 0 ≤ 8 and conjecture 

𝜅 0 = 6.  Let 𝑋𝑝𝑟𝑒  𝑁, 𝑎  be the projective 

closure of the affine curve 𝑌𝑝𝑟𝑒  𝑁, 𝑎 . The 
key to their proof is the fact that 𝑋𝑝𝑟𝑒  3, 0  is 
birationally equivalent to a rank 1 elliptic 
curve, and then use a height argument to 
reduce the problem to a finite amount of 
computation.  They conclude 0 has at most 
2 rational 3

rd
 pre-images for all 𝑐 ∈ ℚ 

excluding finitely many 𝑐 corresponding to 
periodic points ([2], Prop. 5.3).  A nearly 

                                                           
2
 See section II for background on elliptic curves. 

identical argument will be used in this paper 
to prove: 
Theorem 1.3.  Suppose for 𝑐 ∈ ℚ such that 

𝑐 ≠ −2, 𝑓𝑐
𝑁 𝑥 =  −1 has no rational solution 

for 𝑁 ≥ 4, then 𝜅 −1 = 6. 
 
Remark: Note that -1 is a periodic point of 

𝑓−2.  For this morphism, -1 has at least one 
rational N

th
 pre-image for arbitrary N. 

 
Falting’s Theorem tells us that 

curves with genus
3
 greater than 1 contain 

finitely many rational points.  From [3] (Thm. 
3.2), we know that the genus of 𝑋𝑝𝑟𝑒  4,−1  
is 5 and thus contains finitely many rational 
points.  In other words, the are finitely many 
rational 𝑐-values for which 𝑓𝑐

−4 −1 (ℚ) ≠ ∅. 
In a search performed by Benjamin 

Hutz across 𝑎-values up to height
4
 50, only 

𝑎 ∈  −
5

4
,−1,−

3

4
,−

1

2
, 0,

1

4
  have 3

rd
 pre-

image curves birational to an elliptic curve 
with rank 1 (vital to the proof for the value of 
𝜅(𝑎) for 𝑎 = −1, 0). 

In the last section, we present 
computational evidence for no rational 4

th
 

pre-images of -1 as well as for the 
conjectural 𝜅(𝑎) of the other rank 1 𝑎-
values. 

 
II. BACKGROUND 
 
a. Elliptic Curves 
 
 Consider a rational cubic polynomial 
in two variables 
 

𝑎0𝑥
3 +  𝑎1𝑥

2𝑦 + 𝑎2𝑥𝑦
2 + 𝑎3𝑦

3 + 𝑎4𝑥
2 + 𝑎5𝑥𝑦

+ 𝑎6𝑦
2 + 𝑎7𝑥 + 𝑎8𝑦 + 𝑎9 = 0 
 

with each 𝑎𝑖 ∈ ℚ (we say a polynomial is 

rational if all of its coefficients are in ℚ).  The 
solutions of such an equation form an affine 
planar curve, which we shall call 𝐸.  
Suppose we want to find all the rational 
points of 𝐸 (a rational point is a point with 
both coordinates in ℚ).  There is no known 
algorithm for finding a rational point on an  

                                                           
3
 Genus is an invariant of algebraic varieties.  

Defining it here would take us too far afield.  It 
suffices to know that an elliptic curve is 
technically defined as a non-singular curve with 
genus 1 and a rational point. 
4
 See section II b. 
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Figure 1.  Finding a third rational point given two on an elliptic curve. 
 
 
arbitrary cubic curve, but suppose we were 
able to find two rational points 𝒫 and 𝒬 on 𝐸.  

The line 𝒫𝒬     would be rational and in 

general, 𝒫𝒬     would intersect 𝐸 at one other 

point, . 5  

The intersection of 𝒫𝒬     and 𝐸 results 
in a rational cubic: since two of its roots are 
rational so is the third.  Thus, given any two

6
 

rational points on 𝐸 we have a binary 
operation that gives a third rational point on 
𝐸.  After working through some technical 
details, one can see that the set of rational 
points on 𝐸 forms a group 𝐸(ℚ) with respect 
to the “addition” of points.  A non-singular 
cubic curve with at least one rational point is 
called an elliptic curve.   

A fundamental result in the theory of 
elliptic curves is due to Mordell (see [7]). 

 
Theorem 2.1. ([7], Mordell’s Theorem) If a 

non-singular plane cubic curve 𝐸 contains a 
rational point, the group of rational points 
𝐸(ℚ) is finitely generated. 
 
 Since the operation on 𝐸(ℚ) is 
commutative, the group of rational points 

                                                           
5
 There are exceptions in the non-projective 

plane, but if we embed 𝐸 in the projective plane 
ℙ2  and count multiplicities, then the statement 
holds in general. 
6
 A single rational point can be “added” to itself 

by finding the tangent to the curve at that point 
which will intersect the curve a one other point. 

(called the Mordell-Weil group) is isomorphic 
to the direct product of a finite number of 
copies of ℤ (the number of copies is known 

as the rank of 𝐸(ℚ) and a finite number of 
cyclic groups (called torsion subgroups of 

𝐸(ℚ)). 
For a more complete treatment of 

elliptic curves, see [6] and [7]. 
 

b. Height Functions 
 

Height functions measure the 
arithmetic complexity of a number.  We 

define the height of a rational number 
𝑚

𝑛
 as 

follows: 
 

Definition:  The height of 
𝑚

𝑛
∈ ℚ with 

 𝑚,𝑛 = 1 is 
 

𝐻  
𝑚

𝑛
 = 𝑚𝑎𝑥  𝑚 ,  𝑛  . 

 
If 𝐸 is an elliptic curve and 𝒫 ∈ 𝐸 ℚ , then 
we say the height of 𝒫 is the height of the 𝑥-

coordinate of 𝒫: 
 

𝐻 𝒫 = 𝐻(𝑥(𝒫)). 
 
Height functions have quasi-multiplicative 
properties but often it is useful to convert 
these to additive properties by way of the 
logarithmic height. 
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Figure 2.  Pre-images of 𝑎. 
 
 
Definition:  The logarithmic height, denoted 

, is defined on ℙ1 as   
𝑚

𝑛
 = log𝐻  

𝑚

𝑛
 . 

 
The following theorem describes the 
relationship between the height of a point 
and its double. 
 
Theorem 2.2.  [7]  There is a constant 𝐶, 

independent of 𝒫, such that  
 

 2𝒫 ≥ 4 𝒫 − 𝐶 
 

for all 𝒫 ∈ 𝐸(ℚ). 
 
The difficulty in working with this formula is 
the constant 𝐶.  However, we can work 
around 𝐶 with the canonical height. 
 
Definition:  The canonical height, denoted 

 , is defined as 
 

  𝒫 =
1

deg 𝑓
lim
𝑁⟶∞

 𝑓  2𝑁 𝒫  

4𝑁
 , 

 
where 𝑓:𝐸(ℚ) ⟶ℝ is any even function. 
 
Now we can restate Theorem 2.2 using the 
canonical height. 
 
Theorem 2.3.  ([6], Thm. 9.3b)  For all 
𝒫 ∈ 𝐸(ℚ), 
 

  2𝒫 ≥ 4  𝒫 . 
 

The following theorem describes the 
relationship between the canonical and 
logarithmic height. 
 
Theorem 2.4. ([6], Thm. 9.3b)  Let 𝑓 be an 

even function.  Then for all 𝒫 ∈ 𝐸(ℚ), 
 

 deg 𝑓   𝒫 = 𝑓 𝒫 +  𝐶 , 

 
where 𝐶 is a constant independent of 𝒫. 

For a more complete treatment of 
height functions, see [6] and [7]. 

  

III. COMPUTING 𝜅(−1) 

 
In this section we will prove our 

main result, Theorem 1.3, by proving that 
there are at most 2 rational 1

st
, 2

nd
, and 3

rd
 

pre-images.  We begin with a trivial 
maximum upper bound on the size of the set 

𝑓𝑐
−𝑁(𝑎).  Since 𝑓𝑐  is quadratic, the N

th
 pre-

image curve has 𝑑𝑒𝑔 𝑋𝑝𝑟𝑒  𝑁, 𝑎  = 2𝑁; 

thus, there are at most 2
N
 elements in 

𝑓𝑐
−𝑁(𝑎) ℚ  (see Figure 2).  Non-zero rational 

pre-images will always come in pairs 

because if 𝑥0 ∈ 𝑓𝑐
−𝑁(𝑎) ℚ  then −𝑥0 ∈

𝑓𝑐
−𝑁(𝑎) ℚ . 

 
a. Second Pre-Images 
 
We are ready to prove: 

 

Proposition 3.1.  The set 𝑓𝑐
−2(−1) ℚ has at 

most 2 elements for all 𝑐 ∈ ℚ. 
 

Proof.  Fix 𝑎 ∈ ℚ and suppose there exists 

𝑐 ∈ ℚ such that for rational numbers 𝑞, 𝑟, 𝑠, 
 

𝑓𝑐 ±𝑞 = 𝑠,    𝑓𝑐 ±𝑟 = −𝑠,   and  𝑓𝑐 ±𝑠 = 𝑎. 
 

That is, suppose there exists 𝑐 ∈ ℚ such that 

𝑎 has four rational 2
nd

 pre-images.  From the 
above system we derive, 

 

𝑠 =
1

2
 𝑞2 − 𝑟2 ,   𝑐 =

1

2
 𝑞2 + 𝑟2 , 

and 

𝑐 =  − 𝑠2 − 𝑎 . 
 

Substitution yields 
 

1

2
 𝑞2 + 𝑟2 =

1

4
 𝑞2 − 𝑟2 − 𝑎, 

 

and after homogenizing and rearranging, 
 

𝑄4 − 2𝑄2𝑅2 + 𝑅4 − 2𝑄2𝑊2 − 2𝑅2𝑊2

− 4𝑎𝑊4 = 0, 
 

with 𝑄,𝑅,𝑊 ∈ ℤ. 
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Let this equation define an algebraic 
set 𝑆𝑝𝑟𝑒 (𝑎) in the projective  𝑄,𝑅,𝑊 -space.  

For arbitrary 𝑎, the set 𝑆𝑝𝑟𝑒 (𝑎) is a genus 1 
curve containing the rational point 
 𝑄,𝑅,𝑊 =  1, 1, 0 .  Thus 𝑆𝑝𝑟𝑒 (𝑎) is an 
elliptic curve.  Hereafter, we will refer to 
𝑆𝑝𝑟𝑒 (𝑎) as the full 2

nd
 pre-image curve. 

For 𝑎 = −1, Bosma et al. [1] tell us 

that 𝑆𝑝𝑟𝑒 (𝑎) has rank 0 and torsion 

subgroup of order 8.  So #𝑆𝑝𝑟𝑒 (𝑎) is finite 
and all rational points can be obtained using 
the arithmetic of the elliptic curve.  This 
produces six points in 𝑆𝑝𝑟𝑒 (𝑎): 
 
𝒫1 =   1 ∶ 1 ∶ 0 ,              𝒫2 =   1 ∶ −1 ∶  0 , 
𝒫3 =   −1 ∶ 1 ∶ 1 ,           𝒫4 =   1 ∶ 1 ∶ 1 , 
𝒫5 =   1 ∶ −1 ∶ 1 ,           𝒫6 =   1 ∶ 1 ∶ −1 . 
 
𝒫1 and 𝒫2 are points at infinity and hence 
not on the same affine part of the curve.  
The four other points correspond to 𝑐 = −1, 
which has two distinct 2

nd
 pre-images 

because 𝑠 = 0.  Therefore, there does not 

exist 𝑐 ∈ ℚ such that 𝑓𝑐
−2(𝑎) ℚ  has four 

elements.  This concludes the proof. 
 

b. Third Pre-Images 
 

Next we prove: 
 

Proposition 3.2.  The set 𝑓𝑐
−3(−1) ℚ has at 

most 2 elements for all 𝑐 ∈ ℚ. 
 

Proof.  The proof is nearly identical to that of 
[2] (Prop. 5.3).  Consequently, we omit some 
details for the sake of brevity.  From [3] 
(Thm. 3.2) we find that 𝑋𝑝𝑟𝑒  3,−1  has 
genus 1 and contains the rational point 
 𝑥, 𝑐 =  0,−1  so it is birational to an elliptic 
curve with an affine Weierstrass model [1] of 

the form 𝑣2 = 𝑢3 + 2𝑢2 − 5𝑢 + 3, hereafter 
referred to as 𝐸.  The birational map for the 

𝑐-coordinate from 𝐸 to 𝑋𝑝𝑟𝑒  3,−1  is given 
by 
 

𝑐 =
−𝑢4 − 2𝑢2 + 4𝑢 − 2

 𝑢2 − 1 2
 . 

 
According to Bosma et al. [1], 𝐸 has rank 1 

and no torsion.  For 𝒫 ∈ 𝐸(ℚ), let 𝑢(𝒫) 

denote the 𝑢-coordinate of 𝒫.  Define the 
even rational function 𝑔 as 
 

𝑔 𝒫 =
−𝑢(𝒫)4 − 2𝑢(𝒫)2 + 4𝑢 𝒫 − 2

 𝑢(𝒫)2 − 1 2
 . 

 
Then we  may define a new height function 
𝑔 𝒫 = (𝑔(𝒫)). 

If  𝑥1 , 𝑐0  and  𝑥2 , 𝑐0  are rational 

points on 𝑋𝑝𝑟𝑒  3,−1  corresponding to 

points 𝒫1 and 𝒫2 on 𝐸, then 𝑔 𝒫1 =

𝑔(𝒫2) because 𝑔  depends only on 𝑐.  Our 

strategy relies on the fact that 𝐸 has rank 1, 
because we will be able to show that if a 
point  𝒫 has sufficiently large height, then 

–𝒫 is the only other point of the same 
height.  This reduces our problem to 
checking a finite number of points. 

Following [2] (Prop. 5.3) and [6], we 
can bound the difference between the 

canonical height   on 𝐸 and the modified 

height 𝑔 .  Since deg 𝑔 = 8, the difference 

is bounded by the inequality 

 8  𝒫 − 𝑔(𝒫) ≤
1

3
𝑙𝑜𝑔𝐶 

where 𝒫 ∈ 𝐸(ℚ), for an explicit constant 

𝐶 ≈ 1.41 × 10129  computed with PARI/gp [8].   
𝐸(ℚ) has rank 1, so we can choose 

a generator 𝒫0 =  −1,−3 , and for any 

𝑛 ≥ 1 the above inequality and properties of 
the canonical height reveal 

 
 

𝑔  𝑛 + 1 𝒫0 − 𝑔  𝑛 𝒫0 > 8   𝑛 + 1 𝒫0 − 8   𝑛 𝒫0 −
2

3
𝑙𝑜𝑔𝐶 

 

= 8 𝑛 + 1 2  𝒫0 − 8𝑛2  𝒫0 −
2

3
𝑙𝑜𝑔𝐶 

 

= 8 2𝑛 + 1   𝒫0 −
2

3
𝑙𝑜𝑔𝐶 

 
 

It follows that the difference above is 
positive as soon as 
 

𝑛 ≥
1

2
 

𝑙𝑜𝑔𝐶

12  𝒫0 
− 1 ≈ 417.25 
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With   𝒫0 ≈ 0.059 [8].  This tells us that if 
𝑛 > 417, 𝑔  𝑛 + 1 𝒫0 ≠ 𝑔  𝑛 𝒫0  and for 

𝑐 = 𝑔  𝑛 𝒫0 , we have #𝑓𝑐
−3 −1  ℚ = 2.  

Therefore, our problem is reduced to 
verifying that for 1 ≤ 𝑛 ≤ 417, 

#𝑓𝑐
−3 −1  ℚ = 2.  This computation was 

done with PARI/gp [8] and the result was 
affirmative. 
  

c. Proof of Theorem 1.3 
 
We are now ready to prove Theorem 1.3. 
 
Proof.  For any rational 𝑐 ≠ 2, Proposition 
3.1 and Proposition 3.2 imply that 

 
 

𝜅 −1 ≤ #𝑓𝑐
−1(−1)(ℚ) + #𝑓𝑐

−2 −1  ℚ + #𝑓𝑐
−3(−1)(ℚ) ≤ 2 + 2 + 2 = 6 

 
 
For 

𝑐 = −
113

64
 , 

 

#   𝑓𝑐
−𝑁

𝑁≥1

 −1  ℚ  = 6 

 
So this bound is optimal.  Hence, 𝜅 −1 = 6. 
 
 
 
IV. COMPUTATIONAL EVIDENCE 

 
a. Fourth Pre-images 

 
We proved 𝜅 −1 = 6 under the 

condition that 𝑓𝑐
−4 −1  ℚ = ∅.  A search for 

points on the elliptic curve birational to 
𝑋𝑝𝑟𝑒  3,−1  up to logarithmic height 10

5
 

found no 𝑐-values with 4
th
 pre-images. 

 
b. Conjectural 𝜅(𝑎) 
 

Recall that a search of rationals up 
to height 50 found only 6 𝑎-values for which 

𝑋𝑝𝑟𝑒 3, 𝑎  is birational to a rank 1 elliptic 

curve. 
 

𝑎 ∈  −
5

4
,−1,−

3

4
,−

1

2
, 0,

1

4
  . 

 

Of these, 𝜅(𝑎) has been conditionally 

proven for 𝑎 = 0 [2] and 𝑎 = −1.  Here we 

conjecture 𝜅(𝑎) for 𝑎 ∈  −
5

4
,−

3

4
,−

1

2
,

1

4
 . 

With Bosma et al [1] it was 

determined for each 𝑎 ∈  −
5

4
,−

3

4
,−

1

2
,

1

4
  that 

𝑆𝑝𝑟𝑒  𝑎  is birational to an elliptic curve with 
rank 0 and torsion subgroup of order 4, 
implying #𝑆𝑝𝑟𝑒  𝑎  is finite.  Mapping back 
from the elliptic curve to 𝑆𝑝𝑟𝑒  𝑎 , we find 

only two rational points  𝑄,𝑅,𝑊 =  1, ±1, 0  

which are points at infinity.  Thus 

#𝑓𝑐
−2 𝑎  ℚ ≤ 2 for each 𝑎. 

Since 𝑋𝑝𝑟𝑒 3, 𝑎  has rank 1, we were 
able to utilize the arithmetic of the curve to 
search for 𝑐-values corresponding to rational 
3

rd
 pre-images.  Searching points with 

PARI/gp [8] up to logarithmic height 2.5 × 

10
4
, each 𝑎 value had two rational 3

rd
 pre-

images and 0 rational 4
th
 pre-images.  There 

were finitely many exceptions corresponding 
to 𝑓𝑐  for which 𝑎 was a periodic point.  We 
conclude with a conjecture. 
 
Conjecture 4.1. If rank 𝑋𝑝𝑟𝑒  3, 𝑎 = 1, then 

𝜅 𝑎 = 6. 
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