
AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH  VOL. 9, NO. 1 (2010) 

1 

 

 
 
 

A Lesson Learned from Outer Billiard Derivatives 
 

Samuel Otten# and Filiz Doğru 
Department of Mathematics 

Grand Valley State University 
1 Campus Drive 

Allendale, Michigan 49401-6495, USA 
 

Received:  September 15, 2009  Accepted: March 16, 2010 

 
ABSTRACT 

  
As students move onward and upward through collegiate mathematics they are often impressed 
by the power of advanced techniques (aren’t they?), techniques allowing problems that were 
previously difficult or near-impossible to be solved with relative ease.  For example, once 
students have learned the residue theorem in complex analysis they are able to elegantly 
evaluate integrals that were unwieldy in calculus.  Among practicing mathematicians there is also 
a tendency to look to new or powerful results when trying to unlock a problem within one’s own 
research.  This article presents a new theorem concerning derivatives within the outer billiard 
dynamical system, and in so doing serves as a reminder that higher-powered mathematics are 
not always needed and do not necessarily produce more satisfying proofs.  Sometimes it is 
beneficial to keep elementary approaches in mind. 
 
 
I. INTRODUCTION TO OUTER 

BILLIARDS 
 
Outer billiards is a dynamical 

system that is emerging in popularity (see, 
for example, [3], [10] and [14]).  It can be 
thought of both as a counterpart to the well-
known (inner) billiards system and as a 
crude model for planetary motion (as in [7] 
and [8]).  An outer billiard system begins 
with a table and a ball, that is to say, a 

closed convex domain   and a point 

 in the exterior of .  Provided that  does 

not lie on the extension of a side of , there 

are two points on  that form support lines
1
 

through .  The outer (or dual) billiard 

transformation—denoted —has either a 

clockwise or a counterclockwise orientation 
and is defined as the map that sends  to its 
reflection through the support point in the 

                                                           
1
 Support lines and support points are generalizations 

of the concepts of tangent lines and tangent points, 
respectively.  We use the more general notions 
because our tables are not always smooth. 
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given direction (see Figure 1).  If  does lie 

on an extension of a side of , such that the 

support point is not unique, then  is 
undefined, in much the same way that the 
inner billiard transformation is undefined 
when the ball hits a corner of the table.  The 
set of all iterations of a particular point is 

called an orbit of , and if  for 

some   then we say that the point and 
orbit are k-periodic.  

This setup is all that some 
mathematicians need to begin work within 
outer billiards.  Indeed, many interesting 
articles exist concerning the periodic (or 
non-periodic) behavior of the map with 
respect to certain tables in the Euclidean 
plane (e.g., [5], [12], and [13], see Figure 2).  
Another active line of research has centered 
on the Moser-Neumann problem of whether 
or not outer billiard systems exist in which 
orbits are unbounded (e.g., [1], [2], [11]).  
For this article, however, we take a different 
approach by moving the outer billiard game 
to the hyperbolic plane where we do a bit of 
calculus. 
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Figure 1.  Outer billiard mappings with counterclockwise orientation. 
 
 

 

II. DERIVATIVES AT THE 
BOUNDARY OF THE 
HYPERBOLIC PLANE 
 
We employ the Beltami-Klein disk 

model of the hyperbolic plane, rather than 
the Poincaré disk model, because geodesics 
in the Beltami-Klein model are straight lines.  
This fact allows our (Euclidean) intuition to 
be used when dealing with collinear points 
and closed figures.  These benefits outweigh 
the fact that the model is non-conformal—
that is, unlike the Poincaré model, angle 
measurements in the Beltrami-Klein model 
are not the same as angle measurements in 
Euclidean space [4]. 

With this model in hand, we can 

define the outer billiard transformation  in 
the hyperbolic plane by taking the Euclidean 
definition from above and replacing 
Euclidean distances with hyperbolic 
distances.  Moreover, we can extend the 

map  to be defined at infinity (i.e., on the 
boundary of the disk).  The restriction of the 
extended outer billiard transformation to the 

boundary of the disk is denoted , which 

gives a circle map at the boundary, 
.  Let us write the derivative of  

at a periodic point  on the boundary of the 

disk as .  Since the tangent space to 

 at  identifies with , we know that 

 is a linear map from  to itself and so 

a real number.  This number can be 
computed in the following way. 

Let  be a point in the tangent space 

of  infinitesimally close to , with  a 

support point.  Denote the image of  as 

 and the image of  as .  Then, as 

depicted in Figure 3, we have 
 

 

 

The two infinitesimal triangles  and 

 are similar, thus 

 

. 

 
By continuing around the circle, and using 
the chain rule as needed, it follows that the 

derivative of  at a n-periodic point  on the 

boundary of the disk can be computed by 
 

 

 

where  is the Euclidean distance from 

 to the support point between itself 

and , and  is the Euclidean distance 

from  to that same support point (see 

Figure 4).  Readers are encouraged to 
examine the detailed yet accessible proof in 
[2]. 
 There are a few things to note about 
this formula.  First, the distances in the 
formula are indeed Euclidean even though 
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Figure 2.  4-periodic and 8-periodic regions about a square. 
 
 
we are in the hyperbolic plane (hyperbolic 
distances in this situation are infinite).  
Second, there may be vertices of a 
polygonal table that are not support points of 
a periodic orbit at infinity and so contribute 
nothing to the derivative.  This observation is 
related to the notion of a symbolic orbit, 
which is the tuple of vertices (with possible 
repetitions) comprising the support points of 
the given orbit.  Symbolic vertices in the 
tuple—a sort of “support table” (see Figure 
5).  Third, the derivative as presented above 
is defined for a point, but one can verify that 
it is also well-defined with respect to an orbit 
at infinity.  This works because the 
derivatives at all points from the same orbit 
are equal (as is clear from Figure 4), and the 
derivative for an orbit can be defined as the 

common value of .  A natural question 

arises: What is the relationship between 
derivatives from different orbits at infinity 
around the same table? 
 Figure 6 depicts two 3-periodic 
orbits with the same symbolic orbit.  (Per the 
remarks above, it does not make sense to 
compare different symbolic orbits because 
they are essentially orbits about different 
tables.)  Empirical investigations

2
 of these 

                                                           
2
 The problem of finding the periodic orbits of  about a 

polygonal table is still open.  However, we know that in 
hyperbolic geometry, since the map is a composition of 
reflections, it is either parabolic, elliptic, or hyperbolic.  
Therefore, the map has periodic orbits at the boundary 
in addition to possible investigations, we often started 
with the orbits instead periodic orbits in the plane 

and other orbits would lead to the conjecture 

that, for  and  from distinct n-periodic 
orbits at infinity, we have 
 

 

 

 

 
For periodic points with the same support 
table, this reciprocal relationship does in fact 
hold generally—but how should we go about 
proving it? 
 
III. PROOFS OF RECIPROCITY 
 

Regarding the conjecture above, 
those readers who are familiar with 
particular pieces of “high-powered” 
mathematics—namely, isometry classifi-
cations in the hyperbolic plane and Möbius 
transformations—may already sense an 
avenue toward proof.  We shall head in this 
direction first. 

Let  be an outer billiard table such 

that  has two n-periodic points  and  

from distinct orbits.   (It  is shown in  [6] that 

                                                                                
(depending on the size of the table).  To find the orbits 
at the boundary for our empirical of the table or we ran 
the map in reverse, which revealed the periodic orbits.  
For more on the attractive and repulsive properties of 
these orbits, see [1]. 
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Figure 3.  The derivative of  at the point p. 

 
 
 

periodic points of  necessarily have the 

same period.)  Suppose that the points from 
each of these two orbits form simple 

polygons (which circumscribe ).  Suppose 
further that these two orbits have the same 

symbolic orbit , which by the first 
supposition is necessarily an n-tuple with no 
repetitions.  Then we can restrict the 
reflections of the points in the complement 

of  to be just through these n distinct 

vertices of , and this will not alter the 

periodic orbits.  By considering each of 
these n reflections a separate outer billiard 
map, we can compose them to form a 
piecewise-continuous hyperbolic isometry of 
the hyperbolic plane and a continuous 
hyperbolic isometry of the boundary 
(because, by [2], there are two fixed points 
at infinity, namely, the orbits).  Now, a 
hyperbolic isometry of this sort in the 
hyperbolic plane can be described by a 
Möbius transformation [4], and the two fixed 
points of the Möbius transformation are 

precisely the points  and .  Since the 
derivatives at the fixed points of a Möbius 
transformation are reciprocals and will 

correspond with the derivatives of , it 

follows that . 

This argument is mathematically 
valid and contains an elegant connection 
between outer billiards and Möbius 
transformations.  But what does it do for 
undergraduates who have yet to be exposed 
to this mathematical machinery?  Let us turn 

to an elementary proof route that works just 
as well (if not better). 

 

Theorem.  Let  be an outer billiard table in 
the hyperbolic plane such that the extended 

outer billiard map  about  has two 
periodic orbits at infinity with the same 

symbolic orbit.  The points  and   are from 
distinct periodic orbit if and only if  

 

 
We prove this full theorem below 

using elementary geometry in the manner of 
[9].  Let us begin with the forward direction 
and assume that the points are n-periodic, 

writing  for  and  for 

  Note that by periodicity  and 

  Since derivatives of  are point-

independent within an orbit, we are free to 

choose  and label  so that  and label 

 have reflected through the same support 

point and  lies on the arc between  and 

 (see Figure 6, for example).  With this 

labeling, the chord from  to  and the 

chord from  to  intersect at the 

support point .   By the two-chord theorem, 
the product of segments formed on one 
intersecting  chord  is  equal  to  that on  the 
 
 

 
 

Figure 4.  The derivative of  at p is the 

quotient of  and . 
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Figure 5.  Original tables and informal symbolic orbits. 
 
 
other chord.  Using this at all such 
intersections, the product of the results is 

 

 

 (1) 

 

where  and  correspond to the distances 

used in the derivative formula for  and 

 and  correspond to the distances used 

in the derivative formula for . 

Since  and  are from distinct 

orbits, we know that , , and  are 

never collinear.  We therefore construct n 

triangles using , , and  as the 

vertices, and  and  are necessarily sides 
of these triangles (see Figure 7, for 
example).  Looking within the triangles, 

 is equivalent to the inscribed 

angle with endpoints  and , call it .  

Similarly,  will be called .  The 

Law of Sines gives  

for   We can multiply all of these 
together to arrive at 

 
 

 

 
   

We have  appearing on both sides of 

the equation for   As noted above, 

 so , and 

.  Thus we may cancel all the same 

terms, leaving 
 

 

(2) 
Considering equation 2 together with 
equation 1 yields 
 

 

  
and the forward direction is proven. 

For the contrapositive of the 

backward direction, suppose that  and  

are from the same orbit.  Then 

.  Since, by hypothesis, there are two 

periodic orbits on the circle,  is not a 

parabolic isometry of the Beltrami-Klein disk.   
 
 

 
 
Figure 6.  Two 3-periodic orbits about the 
same “support table.” 
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Figure 7.  Triangles with corresponding angle measures. 
 
 
 
Thus, by properties of isometries of the 

hyperbolic plane, the derivatives of  at its 

periodic points are not 1.  So 

.
3
  

Many would say that this proof using 
elementary geometry gives a more intuitive 
sense of why the theorem is true.  Even if 
some would debate this point, it is not 
debatable that this geometric proof is more 
accessible to young mathematicians than 
the Möbius transformation proof.  Moreover, 
the Möbius proof depends on the 
assumption that the two orbits form simple 
polygons, whereas it can be seen clearly in 
the geometric proof that the only 
requirement is equal symbolic orbits (i.e.,the 
argument is valid so long as the orbits 

                                                           
3
 Note that this theorem implies that there can only be 

two distinct periodic orbits about a given support table 
because a point z from a third orbit would force x and y 
to be from the same orbit.  This also follows from the 
(high-powered) fact that  is a hyperbolic isometry and 
thus has two fixed points. 

contain the same support points in the same 
order [9].) 

 
IV. CONCLUSION 

 
We hope that this article has served 

three purposes.  First, to offer a gentle 
introduction to the outer billiard dynamical 
system and a modest list of references for 
those who may be interested in 
investigating it further.  Second, to uncover 
a reciprocal relationship between 
derivatives at periodic points of the 
extended outer billiard map.  Third—and 
perhaps most importantly—to remind us 
that elementary methods can often be “over 
achieving” and that it is not always 
necessary to bring high-powered 
machinery to bear on mathematical 
problems. 

 
ACKNOWLEDGMENTS 
 
This work was supported in part by a 
professional development grant from the 



AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH  VOL. 9, NO. 1 (2010) 

7 

 

NSF Advance Paid grant at Grand Valley 
State University.  We also thank the 
Student Summer Scholars program at 
Grand Valley State for its generous 
support. 
 
REFERENCES 
 

1. S. Otten and F. Doğru, “Sizing Up Outer 
Billiard Tables” Am. J. Undergrad. Res., 
to appear in September 2010. 

2. F. Doğru and S. Tabachnikov, “On 
Polygonal Dual Billiard in the Hyperbolic 
Plane” Reg. Chaotic Dynamics 8 (2002) 
67-82. 

3. F. Doğru and S. Tabachnikov, “Dual 
Billiards” Math. Intelligencer. 27 (2005) 
18-25. 

4. M.J. Greenberg, Euclidean and Non-
Euclidean Geometry: Development and 
History (W.H., Freeman & Co, New 
York, NY, 1993). 

5. E. Gutkin and N. Simanyi,, “Dual 
Polygonal Billiards and Necklace 
Dynamics” Comm. Math. Physics 143 
(1991) 431-450. 

6. B. Hasselblatt and A. Katok, A First 
Course in Dynamics (Cambridge 
University Press, Cambridge [UK] and 
New York [USA], 1993). 

7. J. Moser, “Is the Solar Sysytem Stable?” 
Math. Intelligencer 1 (1978) 65-71. 

8. B. Neumann, “Sharing Ham and Eggs” 
Iota, (Manchester [UK] University, 
1959). 

9. S. Otten, “Do cyclic polygons make the 
cut?” Math. Mag. 80 (2007) 138-141. 

10. R. Schwartz, “Unbounded Orbits for 
Outer Billiards” J. Modern Dynamics 1 
(2007) 371-424. 

11. R. Schwartz, “Outer Billiards on Kites” 
arXiv monograph (2008). 

12. S. Tabachnikov, “Billiards” (Soc. Math. 
De France, Paris, 1995). 

13. S. Tabchnikov, “Asymptotic Dynamics of 
the Dual Billiard Transformation” J. 
Statistical Physics 83 (1996) 27-38. 

14. S. Tabachnikov. “A Proof of Cutler’s 
Theorem on the Existence of Periodic 
Orbits in Polygonal Outer Billiards” 
Geom. Dedic. 129 (2007) 83-87. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Educating Students 
to shape their lives, their professions, and their societies 

The Department of Mathematics at Grand Valley State University is devoted first and 
foremost to excellence in teaching, reflecting the goals of Grand Valley State 
University. 
 
Our mission is to: 

 teach mathematics so as to develop in our students 
o an appreciation of mathematics as a driving force in society, culture 

and history,  
o an understanding of mathematics and its applications, and  
o the ability to reason and communicate mathematically 

as well as to  
 assimilate new mathematical ideas;  
 engage in active scholarship, in mathematics and mathematics education, 

which supports our teaching and furthers mathematical understanding;  
 build productive connections with academic and non-academic communities. 

 

http://www.gvsu.edu/math/index.html 
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