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ABSTRACT 

 
Whether the car’s gas tank is filled up on Monday and the paycheck is deposited on Tuesday, or 
vice versa, the contribution of those two transactions to the checkbook’s final balance is the 
same.  By the commutative property, order does not matter for the algebraic addition of a finite 
number of terms.  However, for a super banker who conducts an infinite number of transactions, 
order may matter.  If a series (sum of all transactions/terms) is convergent and the order of term 
does not matter, then the series is absolutely convergent.  If a series is convergent but the order 
of terms does matter, then it is conditionally convergent.  Georg Bernhard Riemann proved the 
disturbing result that the final sum of a conditionally convergent series could be any number at all 
or divergent.  In two, three and higher dimensions, the matter is even worse, and such series with 
double and triple sums are not even well-defined without first giving sum interpretation to the 
(standard) order in which the series is to be summed, e.g., in three dimensions, summing over 
expanding spheres or expanding cubes, whose points represent ordered triples occurring in the 
summation.  In this note we show using elementary notions from distribution theory that an 
interpretation exists for conditionally convergent series so they have a precise, invariant meaning. 
 
I. INTRODUCTION 
 
 In this note we show using 
elementary notions from distribution theory 
that an interpretation exists for conditionally 
convergent series so that they have a 
precise, invariant meaning.  We think our 
method to be sufficiently elementary that it 
can be understood by undergraduate 
mathematics and science majors, and we 
advocate mentioning this approach when 
discussing conditionally convergent series in 
the calculus curriculum.  Our results also 
demonstrate the power and relevance of 
distribution theory in such problems. 

 Basically our idea is as follows: we 
view a conditionally convergent series in a 
distributional sense on a space of square 
integrable sequences.  Integration of the 
distribution against a suitable test function 
results in an absolutely convergent series.  
The example used in this note will be the 
alternating harmonic series, which is 
essentially the Madelung constant of a one-
dimensional chain of ions with alternating 
charges [1]. 
 We start with a test function in terms 
of the variable of summation (n) and which 
depends upon a parameter α.  A test 
function must go to zero faster than any 

 1



AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL. 7, NO. 3 

polynomial goes to zero in the limit as n 
approaches infinity.  In addition, we require 
that the limit of the test function must be 1 
as α approaches zero.   e-αn (α > 0) is such a 
test function.  We now define the distribution 
to be the original conditionally convergent 
sequence function, then multiply the test 
function against this distribution and sum 
over n, i.e. we complete the scalar product 
of the distribution with the test function.  The 
resulting series with the modified sequence 
function is now absolutely convergent.  For 
the alternating harmonic series example, the 
new series is absolutely convergent for α > 0 
by the ratio test for absolutely convergence.  
Finally, α is allowed to approach zero.  
Allowing α to approach zero seems to turn 
the modified series back into the original 
alternating harmonic series, but this can only 
be true if the conditions of the Lebesgue 
dominated convergence theorem or the 
monotone convergence theorem are 
satisfied.  In general, multiplying the test 
function against the original sequence 
function and then summing fundamentally 
changes the original series.  The resulting 
function returns the same sum as the 
original series for the natural term order of 
the original series, yet the terms in the new 
series can be rearranged without affecting 
the final sum.  In other words, we keep the 
desired aspects of conditional convergence 
without having to deal with the perplexing 
and troublesome aspects, such a Riemann’s 
result.  By defining conditionally convergent 
series in the manner advocated in this 
article, they can be used without ambiguity 
and without additional restrictions in fields 
that involve them, like solid state physics or 
chemistry or quantum physics.  We believe 
the approach advocated in this article makes 
for a much clearer and precise treatment of 
topics like Madelung sums in physics and 
chemistry [1], and, hence, students should 
be made aware of this approach as early as 
possible in their educations. 
 
II. SOME STANDARD RESULTS ON 

CONDITIONAL AND ABSOLUTE 
CONVERGENCE OF SERIES 

 
Definition 1 (Ref. [2], p. 59).  Let {an} be a 
sequence, and let Sn = a1 + a2 + …+ an be 
the nth partial sum.  If Sn exists in the limit of 
n→∞, then we say that 

∑
∞

=1n
na  

Is a convergent series, and write 

∑
∞

=
∞→

=
1
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n

nnn
aS .        (1) 

Thus a series is convergent if and only if its 
sequence of partial sums is convergent.  
The limit of the sequence of partial sums is 
the sum of the series.  A series which is not 
convergent is a divergent series. 
 
Definiton 2 (Ref. [2], p. 71).  The series 

 is absolutely convergent if and only if 

the series
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Definition 3 (Ref. [3]).  The series  is 

conditionally convergent if and only if the 

series  is convergent but not 

absolutely convergent. 
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definition, we have that  and  
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is also convergent.  
 
Theorem (Ref. [2], p. 71, Leibniz).  Let {an} 
be a decreasing sequence of positive terms 
such that an → 0 as n → ∞.  Then the series 

n
n

n a∑
∞

=

+−
1

1)1(  

is convergent. 
 

Proof.  Write Sn for the nth partial sum of the 
series (-1)n+1an.  By definition we have 
 

1221232112 +−+ +−+−+−= nnnn aaaaaaS K   
(4) 

1232112 −− +−+−= nn aaaaS K           
(5) 

 
and so subtracting we have 
 

   (6) 1221212 +−+ +−= nnnn aaSS
 

Since {an} is a decreasing sequence, a2n > 
a2n+1 and so S2n+1 < S2n-1.  Thus we have a 
decreasing sequence. 

S1 > S3 > S5 >…> S2n-1 > S2n+1 >… 
Similarly, S2n> S2n-2 and we have an 
increasing sequence  

S2 < S4 < S6 <…< S2n-2 < S2n <… 
Also S2n+1 = S2n + a2n+1 > S2n.  Thus S2 < S4 
< S6 <…< S2n-2 < S2n < S2n+1 < S2n-1 <…< S5 
< S3 < S1 and the sequence S1, S3, S5… is a 
decreasing sequence which is bounded 
below (by S2), and is convergent to α (say).  
Similarly S2, S4, S6… is an increasing 
sequence which is bounded above (by S1) 
and is convergent to β (say).  Also 
 

S2n+1 – S2n = a2n+1 
 
and so letting n → 0 we have  
 

α – β = 0.  (7) 
So α = β and all the partial sums are tending 
to α, so the series converges. 
 
Corollary (Ref. [2], p. 72).  The alternating 
harmonic series is conditionally convergent. 
Proof.  We have 
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and this is the harmonic series, which is 
clearly divergent [4].  Thus the series is not 

absolutely convergent.  We now show using 
the above Theorem that this series is still 
convergent, and so is conditionally 
convergent.  Write an = (1/n), so an > 0, an+1 
< an, and an → 0 as n → ∞.  Thus all the 
conditions of Leibniz’s theorem are satisfied, 
and so the series is convergent. 
 

Proposition 2 (Ref. [2], p. 78): Rearranging 
absolutely converging series. 
 

Let ∑ na  be an absolutely convergent 
series and suppose that {bn} is a 
rearrangement of {an}.  Then ∑ nb is 

convergent, and ∑ nb = ∑ . na

Proof.  First suppose that  consists 
only of positive terms.  Consider the partial 
sum,  

∑ na

∑
=

=
n

n aS
1ν

ν . 

All terms of Sn occur in the mth partial sum of 
the rearranged series  

∑
=

=
m

m bS
1

'
ν

ν  

provided m is large enough.  Hence, Sm’ > 
Sn.  On the other hand, we may determine 
an index n’ such that the partial sum 

∑
=

=
'

1
'

n

n aS
ν

ν  

of the first series contains all terms b1, b2, 
b3…bm.  It thus follows that Sn’ ≥ Sm’ ≥ Sn.  
Since Sn’ and Sn converge to the same 
value, Sn’ and Sn can be made to differ from 
each other by an arbitrarily small amount.  
This fact together with the just established 
inequality implies that the rearranged series 
also converges to the same limit as the 
original series.  If the absolutely convergent 
series has both positive and negative terms, 
we may regard it as the difference of two 
series each of which has only positive terms.  
Since, in the rearrangement of the original 
series, each of these two series merely 
undergoes rearrangement.  They therefore 
converge to the same value as before, and 
the same is true of the original series when 
rearranged. 
 

Proposition 3 (Ref. [2], p. 76, Riemann).  Let 
an be a conditionally convergent series.  
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Choose ∈x R. Then there is a 
rearrangement {bn} of {an} such that bn = x. 
In other words, we can rearrange a 
conditionally convergent series to get any 
answer we want!  It is this lack of invariance 
under rearrangement of terms which makes 
conditionally convergent series imprecise 
and confusing, and which requires 
specifying further conditions on the series, 
such as the order in which they are to be 
summed. 
 Rather than prove the theorem we 
shall illustrate it with a detailed example 
which shows the essence of the proof.  We 
consider the alternating harmonic series and 
show that different groupings of terms give 
different partial sums that converge to 
different values.  The alternating harmonic 
series in standard order is 
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and is equal to ln(2), as we will show below.   
We will say that a series is a simple (p,n)-
rearrangement of the alternating harmonic 
series if the first term is 1, the subsequence 
of positive terms and the subsequence of 
negative terms are in original order, and the 
series consists of blocks of p positive terms 
followed by n negative terms, i.e., the series 
has the form 
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For example, with p = 1 and n = 2 the series 
becomes 
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using the shortly to be proved fact that the 
sum of the alternating harmonic series in 
standard order in ln(2) [c.f., Corollary below].  
From this calculation, one readily sees that a 

different sum may be obtained by 
rearranging the original series. 
 We now prove that a rearrangement 
of the form in eqn. (10) has the sum [5] 
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rearrangement of the form given in eqn. 
(10).  For each positive integer m define  
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The term Em is the error of the Riemann sum 
Hm illustrated in Figure 1 for approximating 
the definite integral 
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The sequence of error terms is a bounded 
increasing sequence of positive numbers 
whose limit is γ, the Euler constant [6].1  By 
unraveling the rearrangement we get that 
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1 The Euler-Mascheroni constant, as it is sometimes 
called, is the difference between the harmonic series 
and the natural logarithm,  
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which, if we recall that )ln(lim
1

n
x

dx
n∫

∞

∞→
= , is exactly 

the limit of Em as m → ∞.  One of the, as of yet, 
unsolved problems in mathematics is whether or not γ is 
rational [7]. 
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Figure 1.  Hm and Em for m = 4.  Hm is the sum of areas of the rectangles, and Em is the sum of 
the areas of the triangular regions above the graph of 1/x.  That is, Em is the error of the upper 
Riemann sum Hm. 
 
Now let m go to infinity to obtain 
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This considers only those partial sums with 
a full complement of p+n terms, which is 
sufficient to give the sum of the series, since 
the terms approach zero.  Finally, we use 
the fact that the rational numbers are dense 
in the reals to see that it is possible to obtain 
a rearrangement of the alternating harmonic 
series that can be made arbitrarily close to 
any real number we choose. 
 Note that when p = n = 1 we get 
ln(2) for the natural term order, i.e, the  
alternating harmonic series in standard 
order equals ln(2). 
 
Corollary (Ref. [3]).  The sum of the 
alternating harmonic series in natural term 
order is ln(2). 

 
III. A DISTRIBUTIONAL APPROACH 
 
 We now introduce the Schwartz 
space, S, on R: S consists of all infinitely 
differentiable functions φ(x) and all of its 
derivatives go to zero as x goes to infinity 
faster than any polynomial, i.e., 
 

0)()( →x
dx
dxp n

n

ϕ as x → ∞. 
 

Let S’ be the space of all continuous linear 
functionals of S.  For f in S’ and φ in S, we 
write ϕ,f  for the linear functional on S.  

S’ is the space of tempered distributions.  
Any function f(x) on R gives rise to a 
distribution on S by the formula  
 

∫=
R

.)()(, dxxxff ϕϕ  (15) 
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Now to our example with the alternating 
harmonic series.  Let α be a positive real 
number, and define: 
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It is easy to see that φ is in the Schwartz 
space [8].  We define the distribution 
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where δ(x - n) is the Dirac delta function [8].  
(The Dirac delta function acts on φ∈S via 
eqn. (15) (c.f. Ref. [8]).  This equation gives 
us the distribution associated with the 
alternating harmonic series.  Notice that, 
unlike the alternating harmonic series, it has 
a completely precise and unambiguous 
meaning as regards rearrangement of terms 
in the infinite sum.  We claim that it makes 
precise the meaning of the alternating 
harmonic series without regards to 
specifying anything about term order.  We 
consider 
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By applying the monotone convergence 
theorem [9] to even and odd n sums 
separately, we conclude that 
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If we wish, we may think of the right-hand 
side of eqn. (19) in a formal sense as 1,f , 
and so, in a formal sense, we may view the 
alternating harmonic series (standard order) 
as 1,f . 
 Using Gradsteyn and Rhysik [6] we 
are able to compute the absolutely 
convergent sum in eqn. (18).   We find 
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Taking the limit α → 0 of both sides of this 
equation and using eqn. (19), we recover 
the above result that the sum of the 
alternating harmonic series is ln(2), except, 
in this interpretation of it in a distributional 
sense there is no need for specifying the 
natural term order, since any rearrangement 
of the sum in eqn. (20) will give a result 
identical to that of any other arrangement. 
 We note that the specific form of the 
test function does not matter, and we have 
chosen to work with φα only because of 
computational simplicity.  We will still get 
eqn. (19) with any other one parameter 
family of functions φ’α in S with the following 
properties: 
 

i)  φ’α(x) ≤ 1; 
 

ii) φ’0(x) = 1; 
 

iii) φ’α(x) monotonically decreases 
with increasing α; and 

 

iv) φ’α(x) ∈  S. 
 

The reason for this is due to the fact that we 
can always interchange the limit α→0 and 
the summation sign in eqn. (19) for any 
φ’α(x) ∈  S which decreases monotonically in 
α by the monotone convergence theorem.  
Note that for any φ’α, we always have 
absolute convergence of αϕ ',f  and 
hence invariance under rearrangement of 
terms in the resulting infinite series. 
 
IV. CONCLUSIONS 
 
 According to Robert Grosso, Jr., et 
al. [1] in the Chemistry Department of the 
University of Massachusetts, in a Madelung 
sum each term is the sum of all electrostatic 
interactions among ions at a given distance 
from a reference ion divided by that 
distance, and different Madelung sums 
correspond to different crystal structures.  
The alternating harmonic series is a one 
dimensional Madelung sum.  Because the 
Madelung sum naturally is conditionally 
convergent, it needs to be generated in a 
specific way in order to converge.  However, 
with the distributional method of 
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interpretation presented in this paper, the 
order of the terms is irrelevant.  By choosing 
a test function, multiplying it against the 
distribution which represents the 
conditionally convergent series, summing 
the terms, and then letting α → 0, an 
unambiguous meaning has been assigned 
to conditionally convergent series.  This 
allows them to handled easily in the physical 
situations where they appear.  As the above 
example shows, this method not only serves 
as an aid in a computational approach to 
calculating infinite series, it also serves to 
make precise otherwise confusing notions 
about infinite series which are embodied in 
the result of Riemann. 
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