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ABSTRACT 
 

This research work places a new and consistent inner product  ‹·,·›p on a countable family of  the 
real Lp function spaces, proves generalizations of some of the inequalities of the classical inner 
product for  ‹·,·›p provides a construction of a specie of Higher Orthogonal Polynomials in these 
inner-product–admissible function spaces, and ultimately brings us to a study of the Generalized 
Fourier Series Expansion in terms of these polynomials.  First, the reputation of this new inner 
product is established by the proofs of various inequalities and identities, all of which are found to 
be generalizations of the classical inequalities of functional analysis.  Thereafter two 
orthogonalities of  ‹·,·›p (which coincide at p = 2) are defined while the Gram-Schmidt 
orthonormalization procedure is considered and lifted to accommodate this product, out of which 
emerges a set of higher orthogonal polynomials in Lp[-1,1] that reduce to the Legendre 
Polynomials at p = 2.  We argue that this inner product provides a formidable tool for the 
investigation of Harmonic Analysis on the real Lp function spaces for p other than p = 2, and a 
revisit of the various fields where the theory of inner product spaces is indispensable is 
recommended for further studies. 
 
I. INTRODUCTION discovery of the so-called Hilbert space [1], 

named for David Hilbert (1862-1943) whose 
1912 paper on integral equations 
inaugurated this vast theory of abstract 
space [2, 3]. 

 
In a normed linear space we can 

add vectors and multiply them by scalars as 
in elementary vector algebra.  Furthermore 
the norm, ⋅

a b

, on such space 
generalizes the elementary concept of the 
length of a vector.  However what is missing 
in a general normed space which could be 
introduced is an analogue of the familiar dot 
product, i.e. 1 1 2 2 3 3α β α β α β+ +⋅ = for 

( )ia α= , ( )ib β= , i = 1,2,3, and the 

resulting formulae, notably a a a= ⋅  and 

the condition for orthogonality, 0a b⋅ = , 
which are important tools in many 
applications.  Hence the possibility of 
generalizing the dot product and 
orthogonality to arbitrary vector spaces 
should be of interest.  In actual fact this 
consideration was done and led to the  

 In the axiomatic definition of a 
Hilbert space given much later by J. von 
Neumann (1927) [4] and refined by 
mathematicians like H. Löwig (1934) [5], F. 
Rellich (1934) [6] and F. Riesz (1934) [7] an 
arbitrary vector space  was considered 
and on it a mapping  ‹·,·›

Χ
, defined on Χ  x 

Χ  into the scalar field K of  with the 
properties that for all f,g,h ∈   and 

Χ
Χ α  

∈ Χ , 
 (i) , , ,f g h f h g h++ =  

 (ii) , ,f g f= ⋅ gα α  

 (iii) , ,f g g f=  

 (iv) , ≥ 0f f  and , 0f f =  if 

and only if f o=   
‡ Email: femi_oya@yahoo.com  
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This mapping, called an inner product, was 
then used to define a norm, ⋅ , on Χ  

as ,f f f=  and a metric as 

( , ) ,d f g f g f g= − − .  Thus was laid 

the foundation of a space, which was to 
generalize the Euclidean space, unite 
various other spaces and was to prove 
valuable in practical pursuits in the theory of 
Quantum Mechanics, Integral Equations, 
Approximation Theory, etc. 
 However, it cam about that when 
the inner product l2-space was introduced in 
1912 it was found that the equivalent inner 
product for the Lebesgue integrable 
functions only generated the L2-norm, 

2
⋅ , thus making only L2 an inner 

product space out of all the Lp function 
spaces.  These are provable facts in 
functional analysis that are not contested.  In 
what follows, we revisit the present definition 
of an inner product, then modify it and seek 
the necessary and sufficient conditions for 
the Lp function spaces and for all . 2p∈ ΙΝ
 To start with let us assume the 
existence of an inner product on some, if not 
all, of the real Lp function spaces and let us 
denote it by ‹·,·›ρ.  From undergraduate 
knowledge of the classical definition of an 
inner product the following axioms must be 
satisfied by ‹·,·›ρ if this inner product is to 
justify its existence: 

, , ,pf g h L Rα∈ ∈ and some 

(1,00 ,p∈ ) (if not all), we must have  

 (i) , , ,
p p p

f g h f h g h++ =  

 (ii) , ,
p p

f g f= ⋅ gα α  

 (iii) , 0
p
≥f f  and , 0

p
f f = if, 

and only if,  0f =
 (iv) ,

p
=f g

*
,

p
g f  

where the meaning of *p  is explained 
when the structure of the inner product is 
exhibited below.  In order to therefore test 
the truth of the above inner-product axioms 
it would be necessary that one writes out the 
structure of ,

p
⋅ ⋅ in terms of the classical 

inner product, ,⋅ ⋅ .  To this end we define 
the new inner product as  

1, , p
p

f g f g −= , , p for f g L∈ , 

and test the above axioms for the admissible 
values of p , which will be found later.  This 
is shown below by using the definition of 

,
p

⋅ ⋅  and the properties of ,⋅ ⋅ , 

(i) 
1, , p

p
f g h f g h −+ = +

 

 1 1, ,p pf h g h− −= +  

 , ,
p p

f h g h= +  

(ii) 1, , p
p

f g f gα α −=  

 
 1, pf gα −= ⋅ + ,

p
f gα ⋅  

(iii)  1, , p
p

f f f f −=   and  0,≥
1, , p

p
f f f f −= 0=   

if and only if, 0f =  

(iv) 1, , p
p

f g f g −= 1,pg f−=  

=
*

, ,
p

g f  

where *p  in (iv) means that the introduced 
power (p-1) now goes to the first entry in the 
inner product. 
 It follows immediately that ,

p
⋅ ⋅ ,  as 

defined above in terms of the classical inner 
product , ,⋅ ⋅  is indeed an inner product on 

which makes allowance for the inclusion 
of p and for its variation.  This new structure, 
which is called an inner product, will 
obviously induce more than just the -
norm, 

pL

pL
2L

2
⋅ , and generalize the outlook on 

.  The consideration of the values of p for 
which 

2L
,

p
⋅ ⋅ induces a consistent -norm 

is postponed to a later section after we have 
established some of its basic properties, 
which will also help in the proof of the 
axioms of a norm.   

pL
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However, in order to give a precise definition 
of an inner product function space, the 
author wishes to anticipate section VI (infra) 
of the paper by stating that 

pL

,
p

⋅ ⋅  induces a 

consistent -norm only for all pL 2p∈ I/V.  
This brings us to the following definition. 

 = ( ) ( )
1

11

0
,

p
p k kp

k
k

C g h fα β
−

− −−

=

⋅∑  

 
(using the binomial expansion) 
    

1
1 1 1

0
,

p
p p k k p k k

k
k

C gα β
−

− − − − −

=

= ⋅∑ h f   
II. DEFINITIONS        

1
1 1 1

0
,

p
p k p k k p k k

k
C f gα β

−
− − − − −

=

= ⋅∑ h                             

 
An inner product function space 

is a pair 

pL

( , ,p
p

L ⋅ ⋅ )  where is a real 

linear function space and 

pL

,⋅ ⋅
p

,p
satisfies the 

following axioms for , ,f g h L α∈ R∈ and 
all I/V; 2p∈

 
 

It should be noted that only two terms of the 
last relation survive when p=2.  This gives 
 

2 2
, ,

2
,f g h f g f hα β α β+ = ⋅ +  

(i) , , ,
p p p

f g h f h g h+ = +  in consonance with the property of the inner 
product on the real  space.   2L(ii) , ,

p p
f g fα α= ⋅ g  

Defining the -norm as pL
1/, ,p

p p
f f f= for pf L∈ , we can 

establish relations for 
p

p
f g+  and 

p

p
f g− , their sum and difference which 

could include and generalize the well known 
parallelogram and polarization identities for 
p=2.  The following identities address these: 

(iii) 
*

, ,
p p

f g g f=  

(iv) ,
p

f f ≥ 0  and ,
p

f f 0=  if, and 

only if, f=0. 
The following gives some of the 

properties of ,
p

⋅ ⋅ all of which generalize 

those of 
2

, ,⋅ ⋅ = ⋅ ⋅ .  
  
III. IDENTITIES 

If , pf g L∈ , then   
Let , , pf g h L∈ and , ,Rα β ∈ then  

(i) , ,
p p

,
p

f g h f h g hα β α β+ = ⋅ + ⋅  
(i) 

1
1 1

0
,

p
p p p

kp
k

k kf g C f g f
−

− −

=

+ = ⋅ +∑ g−  

(ii) 

( )
1

1 1

0
1 ,

p
kp p p

kp
k

k kf g C f g f
−

− −

=

− = ⋅ − ⋅ −∑ g−

 

(ii) 1, ,p
p p

f g fα α −= ⋅ g  

(iii)    
1

1

0
,

p
p

p
k

f g hα β
−

−

=

+ =∑

1 1, .p k k p k k
kC f gα β− − − −⋅ ⋅ ⋅ h  

Proof: 
 

Recall that ,p

p p
f f f= .  Thus  

 

,p

p p
f g f g f g+ = + +   

Proof: (i) is a direct consequence of axioms 
(2)(i) and (2)(ii) while (ii) follows from axioms 
(2)(ii) and (2)(iii).  (iii) is proved as follows: 

 
   = , ,

p p
f f g g f g+ + +  

( ) 1, , p

p
f g h f g hα β α β −+ = +  

( ) 1 ,pg h fα β −= +  
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=
1 1

1 1 1

0 0
, ,

p p
p p k k p p k k

k k
k k

C f f g C g f g
− −

− − − − − −

= =

+∑ ∑ 1  

 
 
 

by appropriate uses of the result (iii) in 
section III.  Thus,  
 

1
1 1

0
, .

p
p p p k

kp
k

kf g C f g f
−

− −

=

+ = +∑ g−  

The same procedure obtains for 
p

p
f g−                        , ,f                                             = ,f f g f g g+ + + g  

 
 
Remarks:  By adding and subtracting the 
two results above, on obtains two identities 
that include and generalize the 
parallelogram and polarization identities (for 
p=2) respectively. The following 
computations are given for a better 
understanding of the results of section III.   
 
IV. COMPUTATIONS 
 
a.  P = 2  
 

1
2 1 1
2

0
, k k

k
k

f g C f g f −

=

+ = +∑ g  

= ( )
1

1 1 1

0
, ,k k k k

k
k
C f f g g f g− −

=

+∑  

 

= ( ) ( ), , , ,f f g f f g g g+ + +         

 

,
 

=
2 2

2 2
2 ,f f g g+ ⋅ +  

 
In the same way 
 

2 2

2 2
2 , 2

2
f g f f g g− = − ⋅ +  

 
Adding and subtracting, one has the 
parallelogram and polarization identities 
respectively. 

 
b. P = 4 
 

3
4 3 3
4

0
, k k

k
k

f g C f g f −

=

+ = +∑ g

 
 

= 
4 43 2 2 3
4 4

4 , 6 , 4 ,f f g f g f g g+ ⋅ + ⋅ + +  

 
In the same way 
 

4 4 3 2 2 3
4 4

4 , 6 , 4 , 4

4
f g f f g f g f g g− = − ⋅ + ⋅ − +  

 
These give 

4 4 4 2 2
4 4 4

2 12 , 2 4

4
f g f g f f g g+ + − = + +  

 
and 

( )4 4 3 3
4 4

8 , ,f g f g f g f g+ − − = + . 

c. P = 6  
 
Here we obviously have 

 
6 6 5 4 2 3 3 2
6 6

6 , 15 , 20 , 15 , 4f g f f g f g f g f g+ = + + + +  +
65
6

6 , ,f g g+  
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6 6 5 4 2 3 3 2
6 6

6 , 15 , 20 , 15 , 4f g f f g f g f g f g− = − + − + 65
6

6 , ,f g g− +  

 

( )6 6 6 4 2 2 4
6 6 6

2 30 , , 2 6

6
,f g f g f f g f g g+ + − = + + +  

 and  
 

6 6 5 3 3
6 6

12 , 40 , 12 , .5f g f g f g f g f g+ − − = + +  

 
 
Remarks: Before going to the consideration 
of the -norm induced by this inner 
product it is to be noted that for all 

pL
2p∈ I/V, 

there exists a function, ( ), ,gpC f  of 

members of , such that  pL
 

( )2 , .p p p
p

p

p p p p
f g f g f C f g g+ + − = + +  

 
The following gives the structure of 

and some of its properties. ( ,pC f g

V. PROPERTIES 
 

For every , pf g L∈ , the following 
holds: 

(i) ( )
2

2 /
, 2 ,

p
p p k

p k
k I V

C f g C f g
−

−

∈

= ⋅ ∑ k  

(ii) ( ),pC f g > 0  and C f( )2 , 0g ≡  

(iii) ( ) (, ,p pg C f g− = )C f  

) (iv) ( ) (, ,p pC f g C g f= )  

(v) ( ) ( ), ,p
p pg C f gα α α α, RC f = ⋅ ∈  

 

(vi)  
2

2 /
2

p

k I V

−

∈
∑ 1 1 2( 1),k p p pp

kC Rα α α α α= + + − − + ∈  

 
 
 
and in particular   
 

 

2

2 /

p

k I V

−

∈
∑ 12 2p p

kC
−= − .  

    

 

Proof: 
 
(i) Note that 

( ), 2p p p

p p p
C f g f g f g f g= + + − − −  2 p

pp
 

Thus 

( ) ( )
1 1

1 1 1

0 0
, , 1 ,

p p
kp p k k p p k k

p k k
k k

C f g C f g f g C f g f g
− −

− − − − −

= =

= + + ⋅ − −∑ ∑ 1− 2 2p p

p p
f g− −   

 

=
1 1

1 1 1

0 0
, ,

p p
p p k k p p k k

k k
k k

C f f g C g f g
− −

− − − − − −

= =

+∑ ∑ 1 + 

 

( ) ( )
1 1

1 1 1

0 0
1 , 1 ,

p p
k kp p k k p p k k

k k
k k

C f f g C g f g
− −

− − − −

= =

⋅ − − ⋅ −∑ ∑ 1− −  2 2p p

p p
f g− −  
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=
1 2

1 1 1

1 0
, ,

p p
p p k k p p k k

k k
k k

C f f g C g f g
− −

− − − − −

= =

⋅ +∑ ∑ 1−  

           ( ) ( )
1 2

1 1 1

1 0
1 , 1 ,

p p
k kp p k k p p k k

k k
k k

C f f g C g f g
− −

− − − −

= =

+ ⋅ − − ⋅ −∑ ∑ 1− −  

1 1
1 1 1

1
0 1

, ,
p p

p p k k p p k
k k

k k
C f f g C g f g

− −
− − − − −

−
= =

= ⋅ + ⋅∑ ∑ 1k−  

          ( )
1

1 1

0
1 ,

p
kp p

k
k

C f f
−

− −

=

−∑ k kg− ( )+ ⋅  
1

11 1
1

1
1 ,

p
kp p

k
k

C g f
−

− k kg− − −
−

=

− ⋅ −∑  

 
(By index shifts in the second and fourth sums.) 
 

1

1

p

k

−

=

= ∑ ( )( )1 1 11 ,kp p p k
k kC C f f g− − − −+ ⋅ − k

1

1

p

k

−

=

+∑ ( )( )11 1
1 1 1 ,kp p p k k

k kC C g f g−− − −
− −− ⋅ − 1−  

 
1

0

p

k

−

=

= ∑ ( )( )1 1 1 kp p p k
k kC C f g− − −+ ⋅ − k

1

1

p

k

−

=

+∑ ( )( )1 1
1 1 1 ,kp p p k

k kC C f g− − −
− −+ ⋅ − k  

 
(Since , ,f f g f gα β γ α β γ+=  and (-1)k-1 = -(-1)k.)  

 

 ( ) ( )
1

1 1 1 1
1 1

1
1 1

p
k kp p p p p k

k k k k
k

C C C C f g
−

− − − − −
− −

=

 = + − + + − ∑ , k  

  

( ) ( )( )
1

1 1 1 1
1 1

1
1 ,

p
kp p p p p k

k k k k
k

C C C C f g
−

− − − − −
− −

=

 = + + + − ∑ k  

 

 ( )
1

0
1 ,

p
kp p p k

k k
k

C C f g
−

−

=

 = + ⋅ − ∑ k  

 
2

2 /
2 ,

p
p p k

k
k I V

C f g
−

−

∈

= ⋅ ∑ k

0

, 

 

since  for odd values 

of k and  for 

  (ii), (iii), (iv), (v) follow from either 

( )1 kp p
k kC C+ − ≡

( )1p p
k kC C+ −

2 .IN

k = 2 p
kC⋅

k∈
  

 

( ), 2 ,g C f g= ⋅ ∑  
2

2 /

p
p p k k

p k
k I V

C f
−

−

∈

 
or 

 
 
 

( ), 2p p p
p p p p
C f g f g f g f g= + + − − − 2 .p

p
 

 
 



AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL. 4 NO.3 (2005) 

We prove (vi) next.  (vi)  Observe that 

( )
2

2 /
, 2

p
pp k

p k p
k I V

C f f C fα α
−

∈

= ⋅ ⋅∑  and,  

from the second definition,    

 
 

( ) ( ), 1 1 2 1p p p
p p
C f f fα α α α = + + − − +  

.p  

 
   
Equating these two expressions for 

( ),pC f fα  gives (vi) for .Rα ∈  

If 1,α =  we have .                                                          
2

1

2 /
2

p
p p

k
k I V

C
−

−

∈

= −∑ 2
 

VI. ON THE AXIOMS OF A NORM 
 
It would be appropriate at this point 

to justify the consideration of only values of 

p in 2IN and to show the 
1/, p

p p
f f f=  

is indeed a norm in the sense that (i) 
0

p
f ≥  and 0

p
f =  if, and only if, 

 0f =
(ii) 

p p
f fα α= ⋅  

(iii) ,
p p p

f g f g+ ≤ + for ,f g R∈  

and all 2 .p IN∈
2

  The justification of 
p IN∈ and the proofs of the three axioms 

for 
1/, p

p p
f f f=  follow next. 

Axioms (i) is a direct consequence of the 
definition of 

p
f  and (2)(iv), while axiom (ii) 

is established as follows: 
  

( ),p

p p
f f fα α α= ,p

p
f fα=  

            ,p

p
;f fα= ⋅  for 2p IN∈  

            
p p

p
fα= ⋅  

and the result follows.  The second to the 
last step above would had been impossible 
if p were not strictly taken from 2 / ,I V

L
 and 

this nullifies the possibility of making an 
inner product space for either 

p

p IN∈ or 

 since in this case 1 p< < ∞ .ppα α≠  
This serves as the justification for the 

consideration of only 2p IN∈ in the 
construction of the inner production 

function spaces. 

p pf dµ

,⋅ ⋅

pL
Another question that could be 

raised is whether the norm generated from 
,

p
⋅ ⋅  is indeed the -norm of functional 

analysis.  An affirmative answer could be 
deduced from the following computations:  

pL

1, , p
p

f f f f −=
 

 [ ] [ ]
1

, ,a b a bf f dµ−= ∫ ⋅ = ∫  

 
(an integral representation of  on  pL

[ ],
p

a b f dµ= ∫  (since 2p IN∈ ) 
 

p

p
f=  

 
Remarks: The most important of these three 
axioms are (ii) and (iii).  In the proof axiom 
(ii) the necessary and sufficient values of 
p for which the new inner product ,

p
⋅ ⋅  

induces a consistent -norm is derived 
and found to be all 

pL
2p IN∈

pL

, in which we 
saw that the first member of this countable 
family of inner product spaces is actually 
the well behaved space.   2L

An investigation on how to establish 
axiom (iii),i.e.,  

 

2 2p IN p IN p IN
f g f g

∈ ∈
+ ≤ +

2∈
,  

 

with the use of ,
p

⋅ ⋅ takes us to a 

consideration of the expression derived for 

2

p

p IN
f g

∈
+  in section III (supra).  Since 

this expression contains terms in terms of 

 19



AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL. 4 NO.3 (2005) 

inner product, it would be appropriate to look 
for their common bound in the fashion of the 
Cauchy-Bunyakovskii-Schwarz Inequality, 

2
,

2
f g f g≤ , that gives a bound for 

,f g used in the proof of 

2 2 2
f g f g+ ≤ + .  The inequality 

expressing this common bound in the 
expression in 

2p IN
f g

∈
+ would be 

expected to bore down to 

2
,

2
f g f g≤  at   This auxiliary 

inequality and it remarkable proof is detailed 
below. 

2.p =

k

p p
g

p k−

[ ]a b= ∫

p

)

p k

p k

−

−
⋅

p k k

p p
g−

⋅
= ⋅

p k

p

− ⋅

 
VII. INEQUALITY 
 

, p kp k kf g f −− ≤ ⋅   

 

holds for all , , , 2p .f g L k IN p IN∈ ∈ ∈  
 
Proof: 
 
Observe that by the Cauchy-Bunyakovskii-
Schwarz Inequality we have  
 

2
,

2
f g f g≤ .  It then follows that  

 

2 2
,p k p k kf g f g− −≤ ⋅                                                        

 
(I) The only thing that need to be shown is 
the fact that 
 

2 2

p k kp k k
p p

f g f g−− ⋅ = ⋅ ,  

 
 
and is as follows:

 

[ ]
( )( ) [ ]( )

1 1
2 22 2

, ,2 2

p k kk
a b a bf g f d g dµ µ−⋅ = ∫ ⋅ ∫  

 

( )( ) [ ]( )
1 1

2 22( ) 2
, ,

p k k
p k kp k k

a bf d g dµ µ
−

− −
   

⋅ ∫   
     

 

 
 
 

2( ) 2

p k k

p k k
f g−

− ⋅
= ⋅  

 
Since , we can set k IN∈ 2 2k I= ∈ N , 
thus making the above subscripts, 
2( )p k− and , to coincide and be equal 
to p.  Hence 

2k

 

2( 22 2

kp k k
k

f g f g− ⋅ =  

 

   f  

Whence 
 

, kp k kf g f g− ≤            
p

                                             
 

Remarks: Setting 2, 1p k= =  gives the 
Cauchy-Bunyakovskii-Schwarz Inequality as 
expected.   

However, the auxiliary inequality 
above is not only of interest as an extension 
of the Cauchy-Bunyakovskii-Schwarz 
Inequality, but also a very important tool in 
later proofs, most especially in the inner 
product proof of 

2 2p IN p IN
f g g

∈ ∈
+ + (as 

given below) and in the properties of , :
p

⋅ ⋅  
 

2 2p IN p IN p IN
f g f g

∈ ∈
+ ≤ +

2∈
 

 

for all the inner product function spaces. pL
 

Proof: 
  

From section III, we have 
 

 20
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1 2
1 1 1

1 0
, ,

p p
p p pp p k k p p k k

k kp p p
k k

1f g f C f g C f g g
− −

− − − − − +

= =

+ = + + +∑ ∑  

 

  
1 1

1 1
1

1 1
, ,

p p
p pp p k k p p k k

k kp p
k k

f C f g C f g g
− −

− − − −
−

= =

= + + +∑ ∑  

 
 
(by an index shift in the second sum) 
     

( )
1

1 1
1

1
,

p
p p p p k k

k kp
k

p
pf C C f g g

−
− − −

−
=

= + + +∑
     

1

1
,

p
p p p k k

kp
k

p

p
f C f g g

−
−

=

= + +∑  

      
1

1
,

p
p p p k k

kp
k

p

p
f C f g g

−
−

=

≤ + +∑  

      
1

1

p p kp pp
kp pp

k

p

p
f C f g g

−
−

=

≤ + ⋅ +∑  

       

(
0

p pp k kp
k p p p p

k
C f g f g−

=

= ⋅ = +∑ )                                                       

 
 
Completeness of  as inner product 
spaces follows form it norm-metric.  The 
author now goes straight to the business of 
generating orthogonal polynomials in 

2p INL ∈

[ ]( 1,1 ,pL − )  say. 

 
VIII. ORTHOGONALITIES 
 

The existence of an inner product 
on a particular function or sequence space 
naturally leads to a consideration of the 
concept of orthogonality of members of the 
space or that of it subspaces.  The central 
concept of orthogonality, which is peculiar to 
only inner product spaces, is a 
generalization of the condition of the 
condition of perpendicularity of vectors in 
elementary vector algebra.  To start with let 
us consider the classical case: we say two 
non-zero members, x, y of an inner product 
admissible space are orthogonal iff 

,x y = 0 [2].  One may want to extend this 

concept to ,
p

⋅ ⋅

p

.  This extension thus result 

to two kinds of orthogonalities. 

g L∈

 

Definitions: 
 

(i) Let ,f .  We say f is orthogonal 

with respect to g if ,
p

f g = 0.   Since this 

does not necessarily imply , 0
p

g f = , we 

have a second kind of orthogonality   in : pL
(ii) If both , 0

p
f g = and 

,
p

g f 0= hold, we say f and g are 

completely orthogonal.  The following 
example might be of importance. 
 
Example: 

Let ( ) 1/
0 2 pe t −=  and ( )

1/

1
1

2

pp t+ =  
 

e t .  

Then ( ) ( )0 1,
p

e t e t ≠ 0  but 

( ) ( )1 0,
p

e t e t 0=  in 

( )[ 1,1 , 2pL p− ∈ .IV  
Observe that the two kinds of orthogonalities 
coincide at p=2, for obvious reasons.  
Before entering into the subject of Gram-
Schmidt Orthonormalisation Procedure, let 
us establish some useful properties of 
orthogonality and linear independence in 

,
p

⋅ ⋅ . 

 
a. Properties 
 
(a) Let 0kf ≠  and , 0,k i p

f f =  k i≠ then 

1{ }nk kf =  is a linearly independent set.  

(b) , ,
p

,
p

f g f h=

, .pg h L= ∈

 then 

 ; ,g h f

 21
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(c) Given that ,n p
f g = 0  and 

,nf f→ then , 0
p

f g = .  

(d) Continuity of ,
p

⋅ ⋅ :  If nf f→  and 

 then ,ng → g , ,
p pn nf g f g→ . 

(e) An orthonormal set is a linearly 
independent set. 
 
Proofs: 

(a) Consider ∑  
1

0,
n

k k
k

fα
=

=

 

,
1

0,
n

k k i i p
k p

f f fα
=

=∑  

     
             0.0, i p

f=  

     
             0 0 0.i p

f⋅ == ⋅  

1
, 0

n

k k i p
k

f fα
=

∴ =∑  

        
, 0k k k p
f fα⇒ =  

       

0p
k k p
fα ⋅ =  

 
0,kα⇒ =  as  0.kf ≠

 

(b) If , ,
p p

,f g f h= then  

 
1 1, ,p pf g f h− −=  

 
1 1;p pg h− −⇒ =  i.e. .g h=  

 
(c) Consider 
 

, , ,n np p p
f g f g f f g− = −  

 
1, p

nf f g −= − ,  

 
since 0,n p

f f− →  as . n→∞

∴ , ,n p
f g f g 0− =  

i.e., , 0f g =  

   , 0f g⇒ =  
 
(d) Suppose that  
 

0, 0,n n p
f f g g− → − →  as n . →∞

 
The latter convergence also implies  
 

1 1 0,p p
n p
g g n− −− → →∞  for 2 .p IV∈  

 
Now,

 
 

, ,n n p p
f g f g− = ,, , ,n n n np p p p

f g f g f g f g− + −  

 

=  1 1 1, , , ,p p p
n n n nf g f g f g f g− − −− + − 1p−  

 

=  1 1, p p p
n n nf g g f f g− − −− + − 1,   

 

≤ 1 1, ,p p p
n n nf g g f f g− − −− + − 1  

 

≤  
11 1 0pp p

n p n n p pp
f g g f f g −− −⋅ − + − ⋅ →
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(e) Let { }  be an orthonormal set and 

consider  then  

1
n

k ke =

1

n

k
eα

=
∑ 0,k k =

 

1
0,

n

k k j
k

e eα
=

=∑      1 j n≤ ≤  

 

∴   
1

, 0
n

k k j p
k

e eα
=

=∑  

 
, 0k k k p

e eα =  

0p
k k p
eα =  

( )1 0kα =  

0kα =                                                                                        k

 
 
Let be an orthonormal 

sequence in and  

1,2,....,{ }m m ne =

pL
 

1 2{ , ,...., },nf span e e e∈

1
,

n

m m
m

then 

f eα
=

=∑ for some .m Rα ∈  

 
Thus,  

1
, ,

n

k m mp
m p

kf e eα
=

= ∑ e  

   =
1

,
n

m m k p
m

e eα
=
∑  

   = ,k k k p
e eα ⋅  

   = ( )1p
k k kp
e kα α α⋅ = ⋅ =  

Hence 

1
,

n

m
m p

mf f e e
=

= ⋅∑  and ,k k p
f eα =  

is its Fourier coefficient.   
Let us now generate the 

orthonormal sequence { } from a 

given linearly independent set { } .  
The procedure is given as follows:  The first 

element,  is chose as 

{0}k k IVe ∈ ∪

i if 0,1,2,....=

0 ,e

0 1
1

1

,o
o p p

f Ve e
f V

= = in which 

1 1 , k e1 p
f e= −

n
n

n p

Ve
V

=

1

1

n

n n n k
k p

V f e
−

=

,f= − ⋅∑

n
1
1

n
k ke ,−

=

n

nf= −

1

1

n

k

−

=
∑

, ,ne f

,ne f

, ,

pL

k= ∈

 V f , while the rest are 

where 

ke ,  2,3,...n =

k⋅

Let us show that V  is indeed orthogonal to 

any of { } as follows: 
 

1

1
,n m n k k mp p

p

V e f e e e
−

=

⋅∑  

     

, ,n m n k k mp p
,

p
f e f e e= − ⋅  e

      
,n m m m mp p p

f e e e= − ⋅  

       
p

n m m mp p p
f e e= − ⋅  

        

n m n mp p
f e f e= − =  0

 
Let us now exhibit a set of orthonormal 
polynomials in ( )[ 1,1]− for all 2p IV∈ , 
by the Gram-Schmidt procedure [8] above. 
 
b. Construction Of Higher Orthonormal 

Polynomials In    ( )[ 1,1] .pL −
 

We first consider a linearly 
independent set { and 
derive the polynomials from this set, which 
can be re-written as 

21, , ,...., ,....,}kt t t

( ){ ;kk {0} }.f t t IV∪

( )
  For the first of 

these polynomials, set ( )0 0f t= =1,V t   
then  

( ) ( )( )
1/

1/
[ 1,1] 0 2

pp p
o p
V t V t dµ−

 = ∫ =  
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Thus from ( ) 0
0

0 p

Ve t
V

= we have the first of 

these polynomials as  

 ( )
1

0
1
2

p
e t  =  

 
. 

Note that for ( )0
12, .
2

p e t= =  

For , we find  ( )1e t
 
( )1 1 1, k kp

V t f f e e= − ⋅  

          as 0 kt e= − ⋅ ; 1, 0k p
f e =  

=          t
 

This implies that  

[ ] ( )( )
11

1 11,1
2

1

pp p
p

V V t d
p

µ−

  = ∫ =     + 
 

 

and since  

 ( ) ( )1
1

1 p

V t
e t

V
= ,  

we then have that  

( )
1

1
1

2
ppe t t+ =  

 
 

It is observed that for 2,p =  

 ( )1
3
2

e t t= . 

For 2n = ; we use 

( )
1

2 2 2
0

, k
k p

V t f f e e
=

k= −∑ ⋅  to have that  

( ) 2
2

1
3

V t t= −  

since 

( ) ( )
1

2
0

31 2 1
3 2 2

p k pp pk k
p

k

CV t
p k

−

=

 ⋅
= − − + 

∑ 1
, 

then 
   

 

( )
( )

( )

1

2
2

0

1 3 1
32 1

2 2 1

p

p k pp
k k

k

e t t
C

p k

−

=

 
 
 = ⋅

⋅ − ⋅ − + 
∑

−  

 
 

is the third orthonormal polynomial in the 
inner product [ ]( 1,1pL −

( )

) function space, 

which reduces to ( )25 3 1
8

t= −2

2.p =

e t , in 

the classical case of  

For 3n = : We have  

( )
2

3 3 3
0

, k p
k

V t f f e e
=

k= − ⋅∑ .  Thus 

( ) ( ) ( )3
3

1 3 1
3

V t p t p t
p

 = + − + +
 and  

 

( ) ( ) ( )
1

3
0

3 11 2 1
3 3 2 1

p k k p pp
k k

p
k

p p C
V

p p k

−

=

 + ⋅ + ⋅
= − ⋅ 

+ −  
∑ +

 

 
 
The next orthonormal polynomial in [ ]( )1,1pL −  is thus 
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 ( )
( ) ( ) ( )

( ) ( )

1

3
3

0

1 3 1
3 1

2 1
3 2 1

p

p k k pp
k k

k

e t p t p t
p p C

p k

−

=

 
 
   = + − −  + ⋅ − ⋅ − ⋅ − + 
∑

 

 
 
This gargantuan expression reduces to  
  

 ( ) ( )3
3

7 5 3
8

e t t t= −  

when . 2p =
Anyone not devoid of patience can 

exhibit as many of these orthonormal 
polynomials as possible.  At every point of 
these constructions we can derive the 
orthonormal sequence { }  in term 
of the classical Legendre Polynomials when 
we set   But more than Legendre 

Polynomials are arrived at with 

( ) 0,1,...k ke t =

2.p =
,

p
⋅ ⋅  in 

[ ]( 1,pL − )1  for all 2 .p IV∈   For example 

for  4 :p =

 ( )
1
4

0
1 ,
2

e t  =  
 

 

    

( )
1
4

1
5
2

e t t =  
 

 

 

 ( ) ( )
1
4 2

2
35 3 1
96

e t t = − 
 

 

  
 

( ) ( )
1
4 3

3
1287 7 5 ,...
7008

e t t = − 
 

 

 
From the structure of each above it is 
obvious that it can be expressed as  

( )ne t

   
  ( ) ( ) ( ) ( ), ,n n p n pe t P tα= ⋅
 
for each  and {0}n I∈ ∪ V ,2p IV∈ where 

( ),n p Rα ∈ for each n and p and ( ) ( )t,n pP an 

n-degree polynomial in [ ]1,1 ,∈ −t  with the 
properties that  

 ( ),2
2 1

2n
nα +

=

( )

 

and ( )t,2nP =Legendre Polynomials. 

The generalization afforded by ,
p

⋅ ⋅

,

could 

also be sought for other orthogonal 

polynomials in  

and their representation, properties, zeros, 
generating functions, derivatives about the 
origin, recurrence relations,…studied in the 
style of Szegö’s Orthogonal Polynomials [9]. 

)( ) ( )( )2 20, ,L L ∞ −∞ ∞

 
IX. CONCLUSION 
 
The theory of inner product space and it 
applications in the -spaces is worth a 
second look since the inner product 

pL
, ,⋅ ⋅ on 

is one in a countable.   2L
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